EXPRESSION OF RECOMBINANT HUMAN ERYTHROPOIETIN WITH GLYCOSYLATION MODIFICATION IN HEK293T CELLS
Abstract
Stability of erythropoietin (EPO) depends on its glycosylation states. With more glycosylation sites, the EPO protein will be more stable and also increase its half-life. A construct of recombinant human erythropoietin (rhEPO) which contains 2 additional N-link for glycosylation were designed. Based on translation analysis using ORF (open reading frame)-finder and protein alignment analysis using blast-p of NCBI home page, expected recombinant hEPO with additional 6-histidin tag in carboxyl terminus was expressed. HEK293T cells were transfected with recombinant plasmid containing rhEPO by using calcium phosphate method. Expression of rhEPO was detected by dot blot and Western blot analysis using hEPO antibody as the primary antibody and antirabbit antibody with alkaline phospatase linked as the secondary antibody. The bands were detected by BCIP/NBT color development substrate. The data indicated detection of EPO in culture medium of transfected HEK293T cells.
Key words: HEK293T cell, calcium phosphate transfection, N-linked glycosylation, recombinant human erythropoietin
Full Text:
UntitledReferences
Ashley, R. A., Dubuque, S. H., Dvorak, B., Woodward, S. S., Williams, S. K., and Kling, P. J., 2002, Erythropoietin Stimulates Vasculogenesis in Neonatal Rat Mesenteric Microvascular Endothelial Cell, Pedriatic Res., 51,471-478.
Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., Jesus, M. D., and Wurm, F. M., 2008, Rational Vector Design and Multi-pathway Modulation of HEK 293E Cells Yield Recombinant Antibody Titers Exceeding 1g/l by Transient Transfection Under Serum-Free Condition, Nuc. Ac. Res., 36(15), e96.
Bollin, F., Dechavanne, V., and Chevalet, L., 2011, Design Experiment in CHO and HEK Transient Transfection Condition Optimization, Protein Exp. and Purif., 78, 61-68.
Cereghino, G. P. L. and Cregg, J. M., 2000, Heterologous Protein Expression in the Methylotrophic Yeast Pichia pastoris, FEMS Microbiol. Rev., 24, 45-66.
Dasgupta, S., Navarrete, A. M., Bayry, J., Delignat, S., Wootla, B., Andre, S., Christope O., Nascimbeni, M., Jacquemin, M., Martinez-Pomares, L., et al., 2007, A Role for Exposed Mannosylations in Presentation of Human Therapeutic Self-Proteins to CD4+ T Lymphocytes. Proc. Natl. Acad. Sci. USA, 104, 8965-8970.
Durocher, Y. and Butler, M., 2009, Expression Systems for Therapeutic Glycoprotein Production, Current Opinion in Biotechnology, 20, 700-707.
Egrie, J. C. and Browne, J. K., 2001, Development and Characterization of Novel Erythropoiesis Stimulating Protein (NESP), Nephrol. Dial. Transplant., 16[Suppl 3], 3-13.
Fischer, R., Drossard, J., Emans, N., Commandeur, U. and Hellwig, S., 1999, Towards Molecular Farming in the Future: Pichia pastoris-Based Production of Single-Chain Antibody Fragments, Biotechnol. Appl. Biochem., 30, 117-120.
Goldwasser, E., 1975, Erythropoietin and the Differentiation of Red Blood Cells, Fed. Proc., 34(13), 2285-2292.
Gross, A.W. and Lodish, H.F., 2006, Cellular Trafficking and Degradation of Erythropoietin and Novel Erythropoiesis Stimulating Protein (NESP), J. Bio. Chem., 281(4), 2024-2032.
Helena, D. A., Jyothsna, N. L., Rao, P. J., Rao, G. V., and Rao, K. R. S. S., 2006, Therapeutic Implications of Recombinant Human Erythropoietin in Anaemic Related Clinical Manifestations, African J. Biotechnology, 5(25), 2503-2509.
Jordan, M., Schallhorn, A., and Wurm, F. M., 1996, Transfecting Mammalian Cells: Optimization of Critical Parameter Affecting Calcium-Phosphate Precipitate Formation. Nuc. Ac. Res., 24(4), 596-601.
Koury, M. J., Bondurant, M. C., 1991, The Mechanism of Erythropoietin Action, Am. J. Kidney Dis., 18(4Suppl1), 20-23.
Lam, J.S., Huang, H., Levitz, S.M., 2007, Effect of Differential N-linked and O-linked Mannosylation on Recognition of Fungal Antigents by Dendritic Cells. PLoS ONE, 2, e1009.
Loignon, M., Perret, S., Kelly, J., Boulais, D., Cass, B., Bisson, L., Afkhamizarreh, F., and Durocher, Y., 2008, Stable High Volumetric Production of Glycosylated Human Recombinant IFNalpha2b in HEK293 Cells, BMC Biotechnology, 8, 65.
Lotscher, N. G., 2005, Anaemia Management in Dialysis Patients in Switzerland “AIMS”, Dissertation, Universitat Basel, Switzerland.
Mariati, Ho, S. C. L., Yap, M. G. S., and Yang, Y., 2010, Evaluating PostTranscriptional Regulatory Elements for Enhancing Transient Gene Expression Levels in CHO K1 and HEK293 Cells, Protein Expr. Purif., 69, 9-15.
Moore K.L., 2003, The Biology and Enzymology of Protein Tyrosine Osulfation. J. Biol. Chem., 278, 24243-24246.
Narhi, L. O., Arakawa, T. Araki, K. H., Elmore, R., Rohde, M. F., Boone, T., and Strickland, T. W., 1991, The Effect of Carbohydrate on The Structure and Stability of Erythropoietin, The Journal of
Biol. Chem., 266(34), 23022-23026. Patell, V. M. U. S., Patent No. 2009/0029907 A1, 29 Jan. 2009.
Sola, R. J. and Griebenow, K., 2009, Effects of Glycosylation on The Stability of Protein Pharmaceuticals, J. Pharm. Sci., 98(4), 1223-1245.
Sola, R. J. and Griebenow, K., 2010, Glycosylation of Therapeutic Proteins: An Effective Strategy to Optimize Efficacy, BioDrugs, 24(1), 9-21.Strickland T. W., U.S. Patent No. 5856298, 5. Jan. 1999.
Suzuki, J., Fukuda, M., Kawata, S., Maruoka, M., Kubo, Y., Takeya, T., and Shishido, T., 2006, A Rapid Protein Expression and Purification System Using Chinese Hamster Ovary Cells Expressing
Retrovirus Receptor, J. Biotec.126, 463-474.
Wardiana, A., and Santoso, A., 2011, Purification and Carbohydrate Analysis of Recombinant Human Erythropoietin Expressed in Yeast System Pichia pastoris. MAKARA SAINS, 15(1), 75-78.
Yoon S. K., Ahn Y. and Han K., 2001, Enhancement of Recombinant Erythropoietin Production in CHO Cells in an Incubator without CO2 Addition, Cytotechnology, 37, 119-132.
DOI: http://dx.doi.org/10.14499/indonesianjpharm23iss3pp177-182
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 INDONESIAN JOURNAL OF PHARMACY

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian J Pharm indexed by: