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Abstract 

 

Reelin merupakan protein endogen besar yang bertanggung jawab 

untuk mengontrol migrasi dan pertumbuhan dendrit pada neuron yang 

sedang berkembang. Akhir-akhir ini, reelin signaling pathway dipandang 

dapat memodulasi plastisitas sinaps pada otak tikus dewasa. Penelitian ini 

ditujukan untuk membuktikan peran penting reelin signaling pathway pada 

perkembangan toleransi terhadap respon antinyeri karena pemberian morfin. 

Ada bukti ilmiah bahwa pemberian berulang melalui injeksi intracerebro-

ventikular yaitu antibodi monoklonal reelin, inhibitor kompetitif reelin – 

rekombinan apolipoprotein reseptor E2 dan disabled protein inhibitor (Dab1) 

– MG132 menyebabkan terjadinya hambatan pada perkembangan toleransi 

pada penggunaan morfin untuk antinyeri. Lebih lanjut, pemberian morfin in 

vivo secara kronik menyebabkan peningkatan secara bermakna pada 

immunoreaktifitas (IR) untuk Dab1 yang terfosforilasi di daerah thalamus. 

Data ini menunjukkan bahwa aktivasi reelin signaling pathway secara 

persisten karena pemberian kronik morfin mungkin merupakan faktor 

penyebab perkembangan toleransi pada pemakaian morfin sebagai antinyeri.  
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Abstract 
 

The huge endogenous macromolecule protein responsible for 

controlling migration and dendritic growth of developing neurons, reelin, has 

recently been proposed that its signaling pathway modulates synaptic 

plasticity in the adult rodent brain. This study was carried out to investigate 

the pivotal role of the reelin signaling pathway in the development of 

tolerance to morphine-induced antinociception. There was evidence that 

repeated intracerebroventricular administration of reelin’s monoclonal 

antibody, the competitive inhibitor to reelin – apolipoprotein receptor E2 

recombinant, and disabled1 (Dab1) protein inhibitor – MG132, resulted in the 

inhibition to the development of antinociception tolerance to morphine 

administration. Furthermore, chronic in vivo administration with morphine 

caused significance increase of the immunoreactivity (IR) for phosphorylated-

Dab1 in the thalamus. These data suggested that persistent activation of 

reelin signaling pathway due to chronic administration of morphine may be 

responsible for the development of tolerance to morphine-induced 

antinociception.  
Key words: Morphine tolerance, Neuronal plasticity, Opioid receptor, Reelin signaling 

pathway 

 
Introduction 

It is well known that reelin plays an 
important role as a positioning regulator during 

the development of laminar structures of the 
cerebral cortex, hippocampus and cerebellum 
of mammalian brain. The current development 
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in cellular and molecular biology showed that 
reelin signaling pathway is responsible for the 
axonal branching, synaptogenesis and synaptic 
plasticity in adult brain (Goffinet et al., 1984, 
1995; D’Arcangelo et al., 1995; Rice and 
Curran, 2001; Quattrocchi et al., 2002; Kubasak 
et al., 2004, Chen Yet al., 2005).  Initially, the 
process of reelin signaling pathway begin with 
binding to the very-low-density lipoprotein 
receptor (VLDLR) and the apolipoprotein 
receptor E2 (apoER2) which is then induces 
disabled-1 (Dab1) tyrosine phosphorylation. 
Following this, the phosphorylated Dab1 
interacts with proteins known to be important 
for regulation of neuronal migration and 
synaptic plasticity including phosphatidylino-
sitol 3-kinase (PI3K) and cyclin dependent 
kinase 5 (Cdk5)   (D’Arcangelo et al., 1999, 
Bock et al., 2003; Bock et al., 2004; Beffert et 
al., 2004).  Furthermore, the reelin signaling 
pathway has been shown to modulate directly 
on N-methyl-D-aspartate (NMDA) receptors 
and to be required for long-term potentiation 
induction (Chen et al., 2005; Sinagra et al., 
2005). Cdk5 is a member of the cyclin-
dependent kinase family of serine/threonine 
kinases.  As for all members of the Cdk family, 
full activation of Cdk5 requires association with 
a regulatory subunit, three of which have been 
identified in brain: p35, p39 and p67 (Zhang et 
al., 2002).  Substantial recent work has 
identified multiple diverse functions for Cdk5, 
including synaptogenesis, axonal targeting, 
development of neurodegenerative diseases and 
neuronal cytoskeletal dynamics (Ohshima et al., 
1996; Zukerberg et al., 2000).  Interestingly, it 
has been proposed that a functional 
relationship of reelin- and Cdk5-dependent 
signaling pathways shows some similarities to 
regulate neuronal migration and synaptic 
plasticity (Beffert et al., 2004).   

The administration of morphine 
produces a powerful antinociception/analgesia 
(Besse et al., 1990 and prolonged exposure to 
morphine results in tolerance to morphine-
induced antinociception (Narita et al., 1994, 
2002; Smith et al., 2003).  It has been well 
established that glutamate receptors, including 
NMDA receptors, are critical in the develop-
ment and maintenance of opioid tolerance 
(Trujillo and Akil, 1991).  In the present study, 

we therefore investigated whether the reelin 
signaling pathways in the adult brain could be 
involved in the development of the tolerance to 
morphine-induced antinociception. 
 

Methodology 
Animals 

Male ICR mice were obtained from Tokyo 
Laboratory Animals Science Co. Ltd., Tokyo, Japan, 
weighing 23-25 g at the beginning of experiments.  
Animals were housed in groups of eight in a 
temperature-controlled room. They were maintained 
on a 12 hr light-dark cycle (light on 8:00 a.m. to 8:00 
p.m.) and were allowed to adapt to this environment 
for a period of 1 week before the experiments.  
Food and water were available ad libitum. 

 
Intracerebroventricular injection 

Intracerebroventricular (i.c.v.) administration 
was performed as described previously (Haley and 
McCormick, 1957).  Briefly, the injection was made 
with a 2-mm double-needle (Natsume Seisakusho, 

Tokyo) attached to a 25-µL Hamilton microsyringe. 

Solution was injected in a volume of  4 µL per 
mouse. 

 

Antinociceptive Assessments 

The development of antinociceptive 
tolerance to morphine was carried out by injecting 
mice with repeated administration of morphine (10 
mg/kg) or saline (10 /kg) subcutaneously once a day 
for 7 consecutive days. The antinociceptive response 
following morphine injection was assessed by the 
hot plate test (55 ± 0.5 ˚C, Muromachi Kikai Co., 
Ltd., Tokyo, Japan) and the tail-flick test 
(Muromachi Kikai Co., LTD., Tokyo). The latencies 
of those methods were calculated 30 min after 
morphine or saline injection.  The injection of reelin 
inhibitors or vehicle 30 min before every morphine 
injection to groups of mice was designed to assess 
the role of reelin signaling pathway to the 
development of tolerance to morphine treatment.  
Antinociception was calculated as percentage of the 
maximum possible effect (% MPE) according to the 
following formula: 

 
% MPE =  (test latency – pre-drug latency) / (cut-

off time – pre-drug latency) x 100.   

 
The cut-off time was set at 30 sec for the 

hot-plate test or 10 sec for the tail-flick test to 
prevent tissue damage. Antinociceptive response is 
expressed as the mean with S.E.M. of % MPE. 
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Immunohistochemical Study 

Mice were repeatedly injected with morphine 
(10 mg/kg, s.c.) or saline (10 /kg, s.c.) once a day 
for 7 days.  Twenty-four hr after the last injection, 
mice were deeply anesthetized with isoflurane and 
perfusion-fixed with 4 % paraformaldehyde (pH 
7.4.).  The spinal cords and several brain regions 
were quickly removed and post-fixed in 4 % 
paraformaldehyde for 2 hr and were prepared as 
described previously (Narita et al., 2004).  Sections 
were cut transversely at a thickness of 8-10 µm on a 
cryostat (Leica CM1510, Leica Microsystems, 
Heidelberg, Germany).  The sections were blocked 
in 10 % normal goat serum (NGS) in 0.01 M 
phosphate-buffered saline (PBS) for 1 hr at room 
temperature.  Each primary antibody was diluted in 
0.01 M PBS containing 10 % NGS [1:100 reelin 
(Chemicon International Inc., CA, USA) and 1:100 
phosphorylated disabled-1 (p-Dab1, Abcam Ltd, 
Cambridgeshire, UK)] and incubated for 48 hr at 4 
˚C.  The antibodies were then rinsed and incubated 
with each secondary antibodies conjugated Alexa 
488 and Alexa 546 for 2 hr at room temperature.  
The slides were then coverslipped with PermaFluor 
Aqueous mounting medium (Immunon, Pittsburgh, 
PA, USA).  All sections were observed with a light 
microscope (Olympus BX-80) and photographed 
with a digital camera (CoolSNAP HQ; Olympus). 

 

Drugs 

Apolipoprotein E2 was purchased from 
Sigma Chemical Co. (St. Louis, MO, USA). MG132 
(N-[(phenylmethoxy) carbonyl]-L-leucyl-N-[(1S)-1-
formyl-3- methylbutyl]-L-leucinamide) was obtained 
from Tocris Cookson Ltd. (Ballwin, MO). 
Apolipoprotein E2 was dissolved in normal saline 
while MG132 was dissolved in 30 % DMSO for in 
vivo experiments. 

 
Statistical Analysis 

Statistical analysis of significance differences 
between groups was carried out using a two-way 
ANOVA followed by by Bonferroni/Dunn test. 

 

Results and Discussions 
Reelin-like immunoreactivity in the mouse 
brain and spinal cord 

To examine the expression and distri-
bution of reelin in the brain and spinal cord of 
mice, we carried out an immunohistochemical 
study using the monoclonal antibody to reelin.  
Immunoreactivity (IR) for reelin was observed 
in the lamina I-VI of the dorsal horn of the 
spinal cord (Fig. 1).  Furthermore, reelin-like-IR 
was also prominently detected in several brain 
regions of mice, such as the thalamus, 

periaqueductal gray (PAG) and cerebral cortex 
(Figure 2). 

 
Effect of monoclonal antibody to reelin on 
the development of tolerance to morphine-
induced antinociception 

The effect of pretreatment with the 
monoclonal antibody to reelin on the 
development of tolerance to morphine-induced 
antinociception was assessed by the hot-plate 
or tail-flick tests. At first, we confirmed 
whether pretreatment with monoclonal anti-
body to reelin could affect acute morphine-
induced antinociception. A single i.c.v. injection 
of monoclonal antibody to reelin with 
concentrations from 1:100 until 1:1000 dilution 
in saline had no effect on the acute morphine-
induced antinociception and basal hot-plate or 
tail-flick latencies (data not shown). 

 

Repeated s.c. administration of 
morphine (10 mg/kg) once a day for 7 
consecutives days produced a time-dependent 
decline in antinociceptive effect of morphine, 
indicating the development of tolerance to 
morphine-induced antinociception (Fig. 3A and 
3B).  Interestingly, using the tail-flick method, 
repeated i.c.v. pretreatment with monoclonal 
antibody to reelin 1:100, 1:300 and 1:1000 
diluted in saline completely inhibited the 
development of antinociceptive tolerance to 
morphine (Fig. 3A, F(1,14)=320.1, p<0.001;  

Figure 1. Reelin-IR in dorsal horn 
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F(1,14)=150.6, p<0.001 and F(1,15)=7.2, p<0.001, 
respectively).   Furthermore, in hot-plate test, 
the development of tolerance to morphine-
induced antinociception was suppressed by 
pretreatment with anti-reelin antibody at 
concentrations, 1:100  and 1:300 in saline (Fig. 
3B, F(1,14)=19.0, p<0.01 and F(1,14)=9.8, p<0.01, 
respectively),  whereas pretreatment with anti-
reelin antibody at concentration 1:1000 in saline 
has no effect on the development of 
antinociceptive tolerance to morphine 
(F(1,15)=0.9, p<0.36). 

 
Effect of a competitive inhibitor of reelin 
apolipoprotein E2 (Apo E2) recombinant on 
the development of tolerance to morphine-
induced antinociception  

Reelin binds to the very low-density 
lipoprotein receptor (VLDLR) and the 
aporolipoprotein E2 (Apo E2) receptor.  The 
next study was then undertaken to examine the 
effect of a competitive inhibitor of reelin, Apo 
E2 recombinant, on the development of 
tolerance to morphine-induced antinociception.  

Fig. 2. Reelin-IR in other brain areas 

 

Figure 3. Tail-flick and Hot-plate test for reelin monoclonal antibody and apolipoprotein E2 
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As shown in Figs. 3C and 3D, the development 
of tolerance to morphine-induced antinocicep-
tion was significantly inhibited by repeated 
pretreatment with Apo E2 recombinant at 
various concentrations 1:100; 1:300 and 1:1000 
in saline (Fig. 3C; F(1,14)=82.3, p<0.001; 
F(1,12)=69.2, p<0.001 and F(1,12)=52.5, p<0.001, 
Fig. 3D; F(1,12)=6.3, p<0.05; F(1,12)=7.6, p<0.05 
and F(1,12)=4.9, p<0.05, respectively). 

 

Effect of a disabled-1 (Dab-1) protein 
inhibitor MG132 on the development of 
tolerance to morphine-induced antinocicep-
tion  

The cytoplasmic adaptor protein 
disabled 1 (Dab-1) is predominantly expressed 
in neurons and has been shown to function at 
the downstream of reelin.  It may be possible 
that the binding of reelin to Apo E2 receptor 
induces tyrosine phosphorylation of Dab-1, 
which triggers an intracellular signaling cascade.  
Phosphorylated-Dab1-like immunoreactivity 
(p-Dab1-IR) was detected in the posterior 
complex (Po) of the thalamus in saline-treated 
mice.  Interestingly, repeated treatment with 
morphine produced a marked increase in p-
Dab1-IR in the Po of the thalamus compared 
with that observed in saline-treated mice (data 
not shown). The next study was to investigate 
the effect of pretreatment with a Dab-1 protein 
inhibitor MG 132 on the development of 
tolerance to morphine-induced antinociception.  
Repeated i.c.v. pretreatment with a series of the 
doses of MG132 (1, 10 and 20 nmol/mouse) 
completely blocked the development of 
tolerance to morphine. (Fig. 4A; F(1,15)=51.8, 
p<0.001; F(1,14)=41.6, p<0.001 and F(1,15)=22.5, 

p<0.01, Fig. 4B; F(1,15)=4.6, p<0.05; F(1,14)=21.0, 
p<0.001 and F(1,15)=12.0, p<0.01). 

The importance of reelin for neuronal 
migration and cortical lamination during the 
embryonic phase of brain development has 
been extensively studied (Goffinet 1984; Rice et 
al., 1998; Hartfuss et al., 2003; Beffert et al., 
2004).  However, little has been known about 
the role of reelin in the adult brain.  Here we 
show for the first time that reelin and the 
receptors to which it binds are likely to 
contribute to the development of tolerance to 
morphine-induced antinociception in mice.  
Reelin signaling requires binding to two 
members of the LDL receptor gene family, the 
VLDLR and the apoER2, on the surface of 
neurons (Mahley et al., 1998; D’Arcangelo et 
al., 1999).  Further transmission of the signal is 
dependent upon the Dab1.  Dab1 is a neuron-
specific cytoplasmic protein that binds to the 
NPxY motif in the cytoplasmic tails of the 
VLDLR and the apoER2 (Trommsdorff et al., 
1999).  Clustering of VLDLR and/or apoER2 
by reelin binding leads to tyrosine 
phosphorylation in the PI/PTB domain of 
Dab1 and activation of nonreceptor tyrosine 
kinases of the Src family through a feed 
forward mechanism (Ballif et al., 2003; Bock et 
al., 2004). In the present study, we 
demonstrated that the level of p-Dab1-IR in 
the thalamus was significantly increased by 
repeated in vivo treatment with morphine.  
Interestingly, the increased IR for p-Dab1 was 
colocalized with reelin-IR in the thalamus of 
morphine-treated mice.  The treatment with 
monoclonal antibody to reelin will trap the 

Figure 4. Tail-flick and Hot-plate test for inhibitor of Dab1, MG-132 
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endogenous reelin, resulting in the blockade of 
the activation of downstream of reelin pathway 
(Lacor et al, 2000; Caruncho et al, 2004; Fatemi 
et al, 2005). Here we show that the 
pretreatment with the monoclonal antibody to 
reelin, the competitive inhibitor of reelin (Apo 
E2 recombinant) and a Dab1 protein inhibitor 
(MG 132) caused the apparent inhibition of the 
development of tolerance to morphine-induced 
antinociception.  Taken together, these findings 
support the idea that the increased phosphory-
lation state of Dab1 related to activated reelin 
in the thalamus following repeated treatment 
with morphine may be responsible for the 
development of tolerance to morphine-induced 
antinociception. considerable evidence suggests 
that reelin- and Cdk5-dependent signals have 
been implicated in numerous aspects of both 
functional and structural plasticity through its 
regulation of signal transduction pathways 
(Ohshima and Mikoshiba, 2002; Beffert et al., 
2004).  Furthermore, both pathways are also 
involved in modulating synaptic neurotrans-
mission through regulation of N-methyl-D-
aspartate (NMDA) receptor activity (Beffert et 

al., 2004; Chen et al., 2005).  Interestingly, 
change in function of NMDA receptor has 
been shown to affect the development of 
psychological dependence on and antino-
ciceptive tolerance to morphine.  
 

Conclusion 
In conclusion, the present data indicate 

that repeated in vivo treatment with morphine 
induces the increase in Dab1 activity possibly 
related to activating reelin in the thalamus of 
mice.  In addition, the development of 
tolerance to morphine-induced antinocicepton 
was suppressed by several kinds of inhibitors to 
modulate reelin signaling.  These findings 
provide further evidence for the critical role of 
reelin signaling in the regulation of morphine 
tolerance.  
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