Modeling of Quinoacridinium Derivatives as Antitumor Agents using a QSAR analysis

Ruslin Hadanu

Abstract


A QSAR analysis has been performed on a compound series of 1-11 quinoacridinium derivatives as internal test compounds, and compounds of 12-15 quinoacridinium derivatives as external test compounds. The electronic descriptors used in this study were atomic net charge (q), dipole moment (μ), ELUMO, EHOMO, polarizability (α), and Log P. They were calculated through HyperChem for Windows 8.0 software using semi-empirical PM3 method. The antitumor activity (IC50) of quinoacridinium derivative compounds was obtained from literature. Furthermore, the model of QSAR equation was analyzed through RML method which produced the best QSAR equation model: Log IC50 = -13.010 + 15.338(qC3) - 4.31(qC4) - 155.308(qC9) + 33.626(qC11) + 26.626(qC12) + 24.631(qC14) - 0.228(μ) - 0.621(ELUMO) - 0.066(α) + 0.233(Log P). The model of QSAR equation has a correlation coefficient n = 11, (r) = 1.00, (r2) = 1.00, SE = 0, and PRESS = 0.003. Among 28 compounds of quinoacridinium derivative which were designed, only 15 compounds, namely 16, 19-20, 22-28, 30-32, 39, and 40 compounds, have been recommended to be synthesized in the laboratory.

Keywords


quinoacridinium derivatives, QSAR analysis, anti-tumor, PM3 method, MLR analysis

Full Text:

PDF

References


Alam, M., Khan, A., Wadood, A., Khan, A., Bashir, S., Aman, A., … Farooq, U. (2016). Bioassay-guided isolation of sesquiterpene coumarins from Ferula narthex bioss: A new anticancer agent. Frontiers in Pharmacology, 7(FEB), 1–6. https://doi.org/10.3389/fphar.2016.00026

Bladt, T. T., Frisvad, J. C., Knudsen, P. B., & Larsen, T. O. (2013). Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules (Vol. 18). https://doi.org/10.3390/molecules180911338

Bradley, C. J., Yabroff, K. R., Dahman, B., Feuer, E. J., Mariotto, A., & Brown, M. L. (2008). Productivity costs of cancer mortality in the United States: 2000-2020. Journal of the National Cancer Institute, 100(24), 1763–1770. https://doi.org/10.1093/jnci/djn384

Cheng, M. K., Modi, C., Cookson, J. C., Hutchinson, I., Heald, R. A., McCarroll, A. J., … Stevens, M. F. G. (2008). Antitumor polycyclic acridines. 20.1 Search for DNA quadruplex binding selectivity in a series of 8,13-dimethylquino[4,3,2-kl]acridinium salts: Telomere-targeted agents. Journal of Medicinal Chemistry, 51(4), 963–975. https://doi.org/10.1021/jm070587t

Cookson, J. C., Heald, R. A., & Stevens, M. F. G. (2005). Antitumor polycyclic acridines. 17. Synthesis and pharmaceutical profiles of pentacyclic acridinium salts designed to destabilize telomeric integrity. Journal of Medicinal Chemistry, 48(23), 7198–7207. https://doi.org/10.1021/jm058031y

Deep, A., Narasimhan, B., Lim, S. M., Ramasamy, K., Mishra, R. K., & Mani, V. (2016). 4-Thiazolidinone derivatives: Synthesis, antimicrobial, anticancer evaluation and QSAR studies. RSC Advances, 6(111), 109485–109494. https://doi.org/10.1039/c6ra23006g

Ferguson, A. M., Heritage, T., Jonathon, P., Pack, S. E., Phillips, L., Rogan, J., & Snaith, P. J. (1997). EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis. Journal of Computer-Aided Molecular Design, 11(2), 143–152. https://doi.org/10.1023/A:1008026308790

Florea, A. M., & Büsselberg, D. (2011). Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 3(1), 1351–1371. https://doi.org/10.3390/cancers3011351

Fugmann, B., Steffan, B., and Steglich, W., (1984). Necatorone, An Alkaloidal Pigment From The Gilled Toadstool Lactarius Necator (Agaricales). Tetrahedron Letters, 25(33), 3575-3578.

Hadanu, R., Idris, S., & Sutapa, I. W. (2015). QSAR analysis of benzothiazole derivatives of antimalarial compounds based on AM1 semi-empirical method. Indonesian Journal of Chemistry, 15(1), 86–92. https://doi.org/10.22146/ijc.21228

Hadanu, R., & Syamsudin. (2013). Quantitative structure-activity relationship analysis of antimalarial compound of mangostin derivatives using regression linear approach. Asian Journal of Chemistry, 25(11), 6136–6140.

Hagan, D. J., Chan, D., Schwalbe, H., & Stevens, M. F. G. (1998). Antitumour polycyclic acridines . Part 3 . 1 A two-step conversion of 9-azidoacridine to 7 H -pyrido [ 4 , 3 , 2- kl ] acridines by Graebe – Ullmann thermolysis of substituted 9- ( 1 , 2 , 3-triazol-1-yl ) acridines, 915–923.

Hagan, D. J., Giménez-Arnau, E., Schwalbe, C. H., & Stevens, M. F. G. (1997). Antitumour polycyclic acridines. Part 1. Synthesis of 7H-pyrido- and 8H-quino-[4,3,2-kl]acridines by Graebe-Ullmann thermolysis of 9-(1,2,3-triazol-1-yl)acridines: Application of differential scanning calorimetry to predict optimum cyclisation conditions. Journal of the Chemical Society - Perkin Transactions 1, (18), 2739–2746. https://doi.org/10.1039/a702299i

Heliawati, L., Kardinan, A., Mayanti, T., & Tjokronegoro, R. ati. (2015). Piceatanol: Anti-cancer compound from Gewang seed extract. Journal of Applied Pharmaceutical Science, 5(1), 110–113. https://doi.org/10.7324/JAPS.2015.50119

Hosny, M. A., Radwan, H. A., & El-Sawi, E. A. (2012). Synthesis and anticancer activity of some new derivatives of coumarin and quinolinyl mercaptotriazoles. E-Journal of Chemistry, 9(4), 1737–1745. https://doi.org/10.1155/2012/365647

Julino, M., & Stevens, M. F. G. (1998). Antitumour polycyclic acridines. Part 5.1Synthesis of 7H-pyrido[4,32-kl]acridines with exploitable functionality in the pyridine ring. Journal of the Chemical Society - Perkin Transactions 1, (10), 1677–1684. https://doi.org/10.1039/a800575c

Leonetti, C. (2004). Biological Activity of the G-Quadruplex Ligand RHPS4 (3,11-Difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) Is Associated with Telomere Capping Alteration. Molecular Pharmacology, 66(5), 1138–1146. https://doi.org/10.1124/mol.104.001537

Luo, Z.-H., He, S.-Y., Chen, B.-Q., Shi, Y.-P., Liu, Y.-M., Li, C.-W., & Wang, Q.-S. (2012). Synthesis and <i>in Vitro</i> Antitumor Activity of 1,3,4-Oxadiazole Derivatives Based on Benzisoselenazolone. Chemical & Pharmaceutical Bulletin, 60(7), 887–891. https://doi.org/10.1248/cpb.c12-00250

Miladiyah, I., Tahir, I., Jumina, J., Mubarika, S., & Mustofa, M. (2016). Quantitative Structure-Activity Relationship Analysis of Xanthone Derivates as Cytotoxic Agents in Liver Cancer Cell Line HepG2. Molekul, 11(1), 143. https://doi.org/10.20884/1.jm.2016.11.1.203

Missailidis, S., Stanslas, J., Modi, C., Ellis, M. J., Robins, R. A., Laughton, C. A., & Stevens, M. F. G. (2002). Antitumor Polycyclic Acridines . Part 12 . 1 Physical and Biological Properties A Lead Compound in Anticancer Drug Design, 13, 175–189.

Mota, L. F., Gaudio, A. C., and Takahata, Y., (2006). Quantitative Structure–Activity Relationships of a Series of Chalcone Derivatives (1,3–Diphenyl–2–propen–1–one) as Anti Plasmodium falciparum Agents (Anti Malaria Agents). Internet Electronic Journal of Molecular Design, 5(12), 555–569, https://doi.org/10.1103/PhysRevLett.104.207002

Noolvi, M. N., & Patel, H. M. (2013). Synthesis, method optimization, anticancer activity of 2,3,7-trisubstituted Quinazoline derivatives and targeting EGFR-tyrosine kinase by rational approach. 1st Cancer Update. Arabian Journal of Chemistry, 6(1), 35–48. https://doi.org/10.1016/j.arabjc.2010.12.031

Nugraha, I., Annisa, A. N., Wibowo, A. T., & Kusuma, A. M. (2018). Chemopreventive Activity of Kola (Cola Accuminata) Seed Ethanol Extract in Mice Induced by Cyclophosphamide. IOP Conference Series: Materials Science and Engineering, 288(1). https://doi.org/10.1088/1757-899X/288/1/012008

Schmitt, S., & Dou, Q. P. (2013). Metal-Based Compounds as Proteasome-Inhibitory Anti-Cancer Drugs, 1(1), 1–3. https://doi.org/10.4172/.1000e101

Shelton, J., Lu, X., Hollenbaugh, J. A., Cho, J. H., Amblard, F., & Schinazi, R. F. (2016). Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chemical Reviews, 116(23), 14379–14455. https://doi.org/10.1021/acs.chemrev.6b00209

Stanslas, J., Hagan, D. J., Ellis, M. J., Turner, C., Carmichael, J., Ward, W., … Stevens, M. F. G. (2000). Antitumor polycyclic acridines. 7. Synthesis and biological properties of DNA affinic tetra- and pentacyclic acridines. Journal of Medicinal Chemistry, 43(8), 1563–1572. https://doi.org/10.1021/jm9909490

Su, Q. G., Liu, Y., Cai, Y. C., Sun, Y. L., Wang, B., & Xian, L. J. (2011). Anti-tumour effects of xanthone derivatives and the possible mechanisms of action. Investigational New Drugs, 29(6), 1230–1240. https://doi.org/10.1007/s10637-010-9468-5

T. Reddy Prasad Reddy. (2012). Exploring the Anti-inflammatory and Anti-cancer compounds nfrom the leaves of Acalypha indica. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 4(2), 01–07. Retrieved from http://www.iosrjournals.org/iosr-jpbs/pages/v4i2.html

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global Cancer Statistics, 2012. Cancer Statistics CA Cancer J Clin. https://doi.org/10.3322/caac.21262.

Tripodi, F., Pagliarin, R., Fumagalli, G., Bigi, A., Fusi, P., Orsini, F., … Coccetti, P. (2012). Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: Activation of adenosine monophosphate activated protein kinase and induction of apoptosis. Journal of Medicinal Chemistry, 55(5), 2112–2124. https://doi.org/10.1021/jm201344a




DOI: http://dx.doi.org/10.14499/indonesianjpharm30iss3pp167

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Indonesian Journal of Pharmacy

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

web
analytics View My Stats