Hypoglycemic Activity and Pancreas Protection of Combination Juice of Mengkudu (Morinda citrifolia Linn.) Juice and Temulawak (Curcuma xanthorrhiza Roxb.) Juice on Streptozotocin-Induced Diabetic Rats

Bilal Subchan Agus Santoso, Sudarsono Sudarsono, Agung Endro Nugroho, Yosi Bayu Murti


Mengkudu fruit contains scopoletin and temulawak rhizome contains curcumin have been observed because they have strong antioxidant activity and they were used traditionally as antidiabetic. This research aimed to evaluate effect of antihyperglycemic and pancreas protection of juice combination of mengkudu fruit juice (MFJ) and temulawak rhizome juice (TRJ) on diabetes rats which were inducted with streptozotocin (STZ). Rats were grouped into 7 groups, each of group consisting 5 rats. Each of group was treated accordingly for 28 days except for a normal group of rats. Rats taken blood from the plexus retroorbitalis for examination of blood glucose levels every week. On the last day, rats blood was examined for malondialdehyde (MDA) levels. After that the rats were turned off for examination of pancreatic morphological conditions. The results showed that diabetic rats given MFJ-TRJ combination juice experienced a significant decrease in blood glucose levels, a significant decrease in MDA levels and improvement pancreas morphology when compared with the negative control group. The conclusion of this research was giving combination juice of MFJ-TRJ juice can decreased blood glucose level, decreased MDA level and can improved pancreas morphology condition.


hypoglycemic, pancreas protection, combination juice, mengkudu, temulawak

Full Text:



Anwar, M.M., Meki, A.R.M., 2003. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 135, 539–547.

Barham, D., Trinder, P., 1972. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97, 142–145. https://doi.org/10.1039/AN9729700142

Borra, S.K., Gurumurthy, P., Mahendra, J., others, 2013. Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J. Med. Plants Res. 7, 2680–2690.

Chang, W.C., Wu, S.C., Xu, K.D., Liao, B.C., Wu, J.F., Cheng, A.S., 2015. Scopoletin Protects against Methylglyoxal-Induced Hyperglycemia and Insulin Resistance Mediated by Suppression of Advanced Glycation Endproducts (AGEs) Generation and Anti-Glycation. Molecules 20, 2786–2801. https://doi.org/10.3390/ molecules 20022786

Coskun, O., Kanter, M., Korkmaz, A., Oter, S., 2005. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 51, 117–123. https://doi.org/10.1016/j.phrs.2004.06.002

Djatmiko, W., Kusumawati, I., Sholehah, D.N., 2006. Quantitative Analyses of Scopoletin in Various Maturation Degree of Morinda citrifolia Linn Fruits Using TLC - Densitometry. J. Bahan Alam Indones. 6.

Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R., 2008. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008, pdb.prot4986.

Fuhlendorff, J., Rorsman, P., Kofod, H., Brand, C.L., Rolin, B., MacKay, P., Shymko, R., Carr, R.D., 1998. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 47, 345–351. https://doi.org/10.2337/diabetes. 47.3.345

Held, P., 2012. An introduction to reactive oxygen species. Tech Resour.-App Guid. 802, 5–9.

Huang, D.W., Chang, W.C., Wu, J.S.B., Shih, R.W., Shen, S.C., 2016. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res. 36, 150–160. https://doi.org/10.1016/j.nutres.2015.10.001

Hussain, H.E.M.A., 2002. Reversal of diabetic retinopathy in streptozotocin induced diabetic rats using traditional Indian anti-diabetic plant,Azadirachta indica (L.). Indian J. Clin. Biochem. 17, 115–123. https://doi.org/10.1007/BF02867983

Itokawa, H., Shi, Q., Akiyama, T., Morris-Natschke, S.L., Lee, K.-H., 2008. Recent advances in the investigation of curcuminoids. Chin. Med. 3, 11.

Kant, V., Gopal, A., Pathak, N.N., Kumar, P., Tandan, S.K., Kumar, D., 2014. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 20, 322–330. https://doi.org/ 10.1016/j.intimp.2014.03.009

Kim, A.J., Kim, Y.O., Shim, J.-S., Hwang, J.K., 2007. Immunostimulating activity of crude polysaccharide extract isolated from Curcuma xanthorrhiza Roxb. Biosci. Biotechnol. Biochem. 71, 1428–1438.

Kumar, V., Bhatt, P.C., Kaithwas, G., Rashid, M., Al-abbasi, F.A., Khan, J.A.J., Anwar, F., Verma, A., 2016. α-Mangostin Mediated Pharmacological Modulation of Hepatic Carbohydrate Metabolism in Diabetes Induced Wistar Rat. Beni-Suef Univ. J. Basic Appl. Sci. https://doi.org/10.1016/j.bjbas.2016.07.001

Muhtadi, Primarianti, A.U., Sujono, T.A., 2015. Antidiabetic Activity of Durian (Durio Zibethinus Murr.) and Rambutan (Nephelium Lappaceum L.) Fruit Peels in Alloxan Diabetic Rats. Procedia Food Sci. 3, 255–261. https://doi.org/10.1016/j.profoo.2015.01.028

Murthy, K.N.C., Jayaprakasha, G.K., Singh, R.P., 2002. Studies on Antioxidant Activity of Pomegranate (Punica granatum) Peel Extract Using in Vivo Models. J. Agric. Food Chem. 50, 4791–4795. https://doi.org/10.1021/jf0255735

Pothitirat, W., Gritsanapan, W., 2005. Quantitative analysis of curcumin, demethoxycurcumin and bisdemethoxycurcumin in the crude curcuminoid extract from Curcuma longa in Thailand by TLC-densitometry. Mahidol Univ. J. Pharm. Sci. 32, 23–30.

Proks, P., Reimann, F., Green, N., Gribble, F., Ashcroft, F., 2002. Sulfonylurea stimulation of insulin secretion. Diabetes 51, S368–S376.

Ragbetli, C., Ceylan, E., 2010. Effect of streptozotocin on biochemical parameters in rats. Asian J. Chem. 22, 2375.

Rao, U.S.M., Subramanian, S., 2008. Biochemical evaluation of antihyperglycemic and antioxidative effects of Morinda citrifolia. Med. Chem. Res. 18, 433–446. https://doi.org/10.1007/s00044-008-9140-1

Rathinam, A., Pari, L., 2016. Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem. Biol. Interact. 256, 161–166. https://doi.org/ 10.1016/j.cbi.2016.07.009

Robertson, R.P., Harmon, J.S., 2007. Pancreatic islet β-cell and oxidative stress: The importance of glutathione peroxidase. FEBS Lett., Cellular Stress 581, 3743–3748. https://doi.org/10.1016/j.febslet. 2007.03.087

Sayuti, K., Yenrina, R., 2015. Antioksidan Alami dan Sintetik, 1st ed. Andalas University Press, Padang.

Song, Z., 2017. Dietary curcumin intervention targets both white adipose tissue inflammation and brown adipose tissue thermogenesis (Thesis).

Verma, A., Dewangan, P., Kesharwani, D., Kela, S.P., 2013. Hypoglycemic and hypolipidemic activity of scopoletin (coumarin derivative) in streptozotocin induced diabetic rats. Int J Pharm Sci Rev Res 22, 79–83.

Winarti, C., Nurdjanah, N., 2005. Peluang tanaman rempah dan obat sebagai sumber pangan fungsional. J. Litbang Pertan. 24, 47–55.

Wu, W., Geng, H., Liu, Z., Li, H., Zhu, Z., 2014. Effect of curcumin on rats/mice with diabetic nephropathy: a systematic review and Meta-analysis of randomized controlled trials. J. Tradit. Chin. Med. 34, 419–429. https://doi.org/10.1016/S0254-6272(15)30041-8

Yadav, V.S., Mishra, K.P., Singh, D.P., Mehrotra, S., Singh, V.K., 2005. Immunomodulatory effects of curcumin. Immunopharmacol. Immunotoxicol. 27, 485–497.

Yusasrini, N.L.A., Darmayanti, L.P.T., 2016. The effect of dietary seaweed of Caulerpa sp. and Gracilaria sp. on blood glucose levels and histological pancreas of diabetic rats. Media Ilm. Teknol. Pangan Sci. J. Food Technol. 3, 53–61.

DOI: http://dx.doi.org/10.14499/indonesianjpharm29iss1pp16


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

analytics View My Stats