Metabolite Fingerprinting of Eleutherine palmifolia (L.) Merr. by HPTLC-Densitometry and Its Correlation with Anticancer Activities and In Vitro Toxicity

Roihatul Mutiahi¹, Chorida Muhjatul Hadya¹, Burhan Ma’arif Z.A. ¹, Weka Sidha Bhagawan¹, Rahmi Annisa¹, Yen Yen Ari Indrawijaya¹, Fadhila Isma Huwaida¹, Ria Ramadhani D.A.³, Retno Susilowati², Imam Taufik³*

¹. Department of Pharmacy, Faculty of Medical and Health Science, State Islamic University of Maulana Malik Ibrahim, Jl Gajayana No 50, Malang, Jawa Timur 65115 Indonesia
². Department of Biology, Faculty of Science and Technology, State Islamic University of Maulana Malik Ibrahim Malang, Jl Gajayana No 50, Malang, Jawa Timur 65115 Indonesia
³. Indonesia National Agency of Drug and Food Control, Jl Dr. Kayadoe, Ambon Maluku 97116 Indonesia

ABSTRACT

Eleutherine palmifolia (L.) Merr. (E. palmifolia or Dayak Onion) is an anticancer plant used for traditional medicines. The difference of cultivation sites may affect metabolites content, pharmacological activity and toxicity profiles. This study aimed to determine the metabolite fingerprinting, anticancer and toxicity profiles of E. palmifolia from several regions in Indonesia for authentication, efficacy, safety and quality control. Samples were obtained from six different locations in Indonesia which included West Java (WJ), Central Java (CJ), East Java (EJ), East Borneo (EB), Central Borneo (CB), and South Borneo (SB). Metabolite fingerprinting was determined by HPTLC-densitometry method and profile of anticancer and toxicity were analyzed by MTT-ELISA method. The difference among metabolite fingerprinting, anticancer, and toxicity profile was analyzed by Principal Component Analysis (PCA) and Hierarchical Component Analysis (HCA), whereas the association among them was analyzed by Partial Least Square (PLS). The PCA results showed a difference in E. palmifolia metabolite fingerprints and the HCA results showed that six different regions were the same cluster. The PLS-DA analysis showed four significant metabolites proposed as anticancer markers with Rf 0.34, 0.59, 0.76, 0.93 and three significant metabolites proposed as negative markers with Rf 0.02, 0.44 and 0.59. E. palmifolia from East Java had the lowest IC₅₀ (86.98±4.62µg/mL) and higher SI value (5.5).

Keywords: E. palmifolia, metabolite fingerprinting, anticancer profiles, toxicity profiles

INTRODUCTION

E. palmifolia (Dayak Onion) has been used empirically by Indonesian people to treat several diseases such as cancer. E. palmifolia bulb contains glycosides, flavonoids, steroids, tannins, and phenolics compounds. The flavonoids contained are considered responsible for the anticancer activity through inhibition of the colon cancer cell cycle in the G1/S and G2/M phases (Ren et al., 2003; Chahar et al., 2011). Eluetherine and elecanacin compounds in this plant are also known to inhibit TCF/β-catenin transcription in SW480 colon cancer cells (Li et al., 2008) and to show selective activity against colorectal cancer (Fitri et al., 2014).

Differences in cultivation sites may affect metabolite content, activity, and toxicity (Verma and Shukla, 2015) including internal and external factors (Kim et al., 2011). Internal factors include genetic factors and physiological variations (Verma and Shukla, 2015), whereas external factors (environment) include climate change, soil type, nutrient content, fertilizer use, damage caused by microorganisms, stress induced by UV radiation, heavy metals, and pesticides (Canas et al., 2015).
Metabolite fingerprinting of medicinal plants is very important to ensure authenticity, safety, and efficacy because of varying metabolite content (Patel et al., 2015). Metabolite fingerprinting is an analytical technique based on the chromatogram pattern of compounds that provide special characteristics (Wolfender et al., 2015, Fiehn, 2002). HPTLC can be an alternative for analyzing plant extracts because it is more efficient in evaluating herbal medicines (Dhalwal et al., 2008). To develop E. palmifolia into phytomedicine, several requirements must be met. Phytomedicine is a preparation of natural ingredients in which efficacy and safety has been proven scientifically with clinical trials and pre-clinical trials along with in which raw materials and end-products has been standardized (Indonesia National Agency of Drug and Food Control, 2005). Until now, there is still no report on metabolite fingerprinting of E. palmifolia from Indonesia. In this work, HPTLC and ELISA were used to determine metabolite profiles, anticancer activity, and toxicity profiles of E. palmifolia to obtain marker compounds, efficacy, and safety profiles of this plant.

MATERIALS AND METHODS

Plant material and extraction

E. palmifolia was obtained from West Java, Central Java, East Java, East Borneo, Central Borneo, and South Borneo (Table I). The specimens were determined at the UPTD Materia Medika Malang with collection number 074/348/102.7/2017 and were stored in the Pharmacognosy Laboratory of Pharmacy Department of State Islamic University of Maulana Malik Ibrahim Malang. Simplicial powder was extracted by UAE method using 96% ethanol with a ratio of 1:20. The ethanol extract was stored in an oven at 40°C and was ready to use for further testing.

Mobile phase optimization

Ten mg of E. palmifolia 96% ethanol extract was dissolved in 1mL of 96% ethanol. The 2μL of extract was applied on the 20x10cm F254 Silica Gel HPTLC plate and was eluted using 2 types of mobile phases i.e. chloroform: methanol (8:2 v/v) and n-hexane:ethyl acetate (6:4 v/v). HPTLC plate results were scanned by TLC Scanner (CAMAG, Germany) at 254nm and 366nm, were sprayed with 10% H2SO4 as its stainer and were heated on the hot plate (CAMAG, Germany) at 105°C for 5min.

Method validation

The validation method for metabolite fingerprinting was carried out using two parameters including precision and stability test (on a Merck HPTLC plate). Precision and stability tests were carried out by applying 5μL of samples on a plate (concentrations of 20,000 and 10,000ppm) at 0, 15, 30, 45, 60, 75 and 90min by 3 times replication. Precision test (interday) and stability test (on the plate) were analyzed using PCA (Indah, 2015).

Metabolite fingerprinting test

Each ten mg of 96% ethanol extract of E. palmifolia from six different locations including West Java (WJ), Central Java (CJ), East Java (EJ), East Borneo (EB), Central Borneo (CB) and South Borneo (SB) was dissolved in 96% ethanol to obtain concentration of 20,000ppm and 10,000ppm, was filtered using a membrane filter of 0.20μm. Five μL of samples was applied (10,000 ppm) on a 20x10 cm F254 Silica Gel HPTLC plate and was eluted using selected mobile phase (chloroform:methanol 80:20 v/v) and 3 times replication, was sprayed using 10% sulfuric acid solution, and HPTLC plate was scanned using TLC Scanner (CAMAG, Germany) at 254nm. All spots on all tracks were scanned at 200-700nm and were

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sites of Cultivation</th>
<th>Altitude (m)</th>
<th>Average Temp (°C)</th>
<th>Average Rainfall (mm)</th>
<th>Climate Type</th>
<th>Voucher Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>East Borneo</td>
<td>29</td>
<td>26.4</td>
<td>2376</td>
<td>Af</td>
<td>074/348/102.7/2017</td>
</tr>
<tr>
<td>SB</td>
<td>South Borneo</td>
<td>10</td>
<td>26.8</td>
<td>2765</td>
<td>Af</td>
<td>074/348/102.7/2017</td>
</tr>
<tr>
<td>CB</td>
<td>Central Borneo</td>
<td>31</td>
<td>27.2</td>
<td>2627</td>
<td>Af</td>
<td>074/348/102.7/2017</td>
</tr>
<tr>
<td>EJ</td>
<td>East Java</td>
<td>127</td>
<td>25.0</td>
<td>1819</td>
<td>Aw</td>
<td>074/348/102.7/2017</td>
</tr>
<tr>
<td>WJ</td>
<td>West Java</td>
<td>668</td>
<td>24.0</td>
<td>3454</td>
<td>Af</td>
<td>074/348/102.7/2017</td>
</tr>
<tr>
<td>CJ</td>
<td>Central Java</td>
<td>1221</td>
<td>19.1</td>
<td>3299</td>
<td>Am</td>
<td>074/348/102.7/2017</td>
</tr>
</tbody>
</table>
The pellets from the centrifugation were collected at 2,000 rpm. This resulted in a concentration of 10,000 cell absorbance units per mL, with the supernatant absorbed for 24 hours at room temperature. The absorbance data obtained from each well plate by 100μL/well and was used to determine which concentration (μg/mL) of E. palmifolia extract was tested to show the cytotoxic potential of an extract (Mutiah, 2017). The percentage of cell viability was calculated to get IC50 value. IC50 is a concentration in which 50% of population cell growth is inhibited reflecting the cytotoxic potential of an extract (Mutiah, 2017). IC50 values were determined by probit analysis using SPSS v25.

Analysis of Metabolite Fingerprinting Data

Metabolite fingerprinting data of E. palmifolia ethanol extract from each location (Rf value, AUC, maximum absorbance) were identified and were processed using PCA and HCA (Multibase v2015 adds in Excel v2013) to obtain the difference among them, whereas the anticancer profile of WiDr cells and Vero cells were processed using one-way ANOVA (SPSS v16).

RESULT AND DISCUSSION

Method validation

The validation method was carried out before the metabolite fingerprint of E. palmifolia extract were tested to determine whether the analysis method used in this study had met the requirements in the validation parameters i.e. stability test after it was applied on HPTLC plates and interday precision tests (Indah, 2015).

Precision testing

The precision test aimed to obtain the proximity of measurement results when the analysis method was repeated (Ravichandran et al. 2010). The results obtained showed that samples with a concentration of 10,000ppm were more precise than those with concentrations of 20,000ppm. The profile of PCA analysis for a precision test (Figure 1) showed that the repetition at the concentration of 10,000ppm was more precise than the concentration of 20,000ppm. This result was used to determine which concentration was best to be chosen for metabolite fingerprinting testing.

Stability test

The stability test is a stage of pre-validation to show sufficient stability of an analyte in a matrix or on an HPTLC plate in a certain time. This stage is the most important stage in conducting research (Yuwono and Indriyanto, 2005). Stability test of E. palmifolia extract on HPTLC plate was carried out in minutes 0, 15, 30, 45, 60, 75 and 90. The results of the stability test showed that analyte could be well separated and stable until 90min on the HPTLC plate (Figure 2).
Figure 1. PCA profile (in principal component/PC) for precision test (on HPTLC plate) between concentration 10,000 ppm and 20,000 ppm in minutes 0, 15, 30, 45, 60, 75 and 90: (a) PC1 vs PC2; (b) PC1 vs PC3; (3) PC2 vs PC3

Figure 2. PCA profile (in principal component/PC) for stability test (on HPTLC plate) between concentration 10,000 ppm and 20,000 ppm in minutes 0, 15, 30, 45, 60, 75 and 90: (a) PC1 vs PC2; (b) PC1 vs PC3; (3) PC2 vs PC3
Metabolite fingerprinting of *E. palmifolia* extract

Metabolite fingerprinting from eighteen samples of *E. palmifolia* extracts obtained from six different locations i.e. West Java (WJ1a-WJ1c), Central Java (CJ1a-CJ1c), East Java (EJ1a-EJ1c), East Borneo (EB1a-EB1c), Central Borneo (CB1a-CB1c) and South Borneo (SB1a-SB1c) were analyzed with a normal phase HPTLC-densitometry. The stationary phase used was an 20x10 cm F254 silica gel 60 HPTLC plate and the selected mobile phase was chloroform: methanol (80:20 v/v) with extract concentration of 10,000 ppm in ethanol.

The metabolites profiles of *E. palmifolia* extract from six different locations were similar although they grew from different environments (Figure 3). There were 145 metabolites detected using HPTLC-densitometry (Figure 4) and each region averagely contained eight metabolites.
The retention factor (Rf) values found in each region showed similarities. The same Rf values found in all regions were 0.13, 0.28, 0.40, 0.71 and 0.87. The results of this metabolite fingerprinting of *E. palmifolia* extract could be proposed as a candidate of analytical marker compounds of this plant.

Principal component analysis (PCA)

The results of metabolite fingerprinting were analyzed using PCA. PCA showed the visualization of the score plot (right) and the loading plot (left). Score plots described the characteristics of the sample, whereas the loading plot described the relationship (correlation) between the variables in each component. PCA score plot and loading plot explained variants PC 1 (29.3%), PC 2 (21.3%), PC 3 (14.8%) and total variants explained by the three principal components were 65.4%. Visualization of PCA results showed that three significant metabolites influenced clusters formation because they appeared on each PC, both PC1, PC2, and PC3 (Figure 5). The significant metabolites were found on Rf values of 0.44, 0.55 and 0.59.

There were two clusters formed i.e. (I) EB, CJ, WJ and (II) EJ, SB, CB (Figure 5). The metabolites of *E. palmifolia* originated from EB, CJ and WJ showed similarities among them as well as those from EJ, SB, and CB. To confirm the clusters formed in PCA, HCA analysis was also carried out.

Hierarchical clustering analysis (HCA)

The results of HCA showed characteristics that were close among samples from West Java (green), East Borneo (red), Central Java (grey), and...
South Borneo (blue), Central Borneo (yellow) and East Java (purple). It could be concluded that all samples taken from six different locations were similar and located in one cluster (Figure 6).

Figure 6. Dendrogram of Hierarchical Clustering Analysis (HCA) that showed the similarity of *E. palmifolia* from West Java (Green), East Borneo (Red), Central Java (Grey), Central Borneo (Yellow), East Java (Purple) and South Borneo (Blue).

The HCA results showed that the metabolite fingerprinting of East Borneo was similar to West Java and Central Java. Central Borneo has similarities with South Borneo and East Java. The contents of these metabolites were influenced by two factors i.e. internal factors and external factors (Heuberger, et al. 2014). Internal factors that influenced the composition of the compound included genetic and physiological variations, whereas external factors are factors such as geographical conditions (altitude), climate, humidity, light intensity, temperature, nutrient intake and radiation (Verma and Shukla, 2015).

Cytotoxic test of *E. palmifolia* extract

The cytotoxic test aimed to determine the anticancer potency from six different regions in Indonesia. The cytotoxic test was carried out using the MTT assay method on WiDr cells. WiDr cells were treated using a 96% ethanol extract of *E. palmifolia* bulb with concentration series (µg/mL) of 125; 62.5; 31.25; 15.625 and 7.8125.

In this experiment, the percentage of cell viability was lower with increasing extract dose and on the other hand it was higher with decreasing dose (Mut’iah et al., 2018) (Figure 7). This showed that there was an existence of a dose-dependent phenomenon between the concentration and viability of living cells. Then, the percentages of cell viability were converted using probit analysis to obtain IC₅₀. The results of probit analysis showed that there were differences in IC₅₀ of *E. palmifolia* extracts from six different locations. The IC₅₀ values (µg/mL) were 86.98 (East Java), 104.52 (Central Borneo), 133.23 (East Borneo), 159.07 (West Java), 269.80 (South Borneo) and 272.55 (Central Java). Dayak onion extract originating from the East Java region showed the highest cytotoxic effect on WiDr cells (the lowest IC₅₀) than other extracts and it also showed potent activity as an anticancer with an IC₅₀ value <100µg/mL (Prayong et al., 2008).

Figure 7. The percentage of viability cell (±SD) on colon cancer cell WiDr (A) and normal/vero cell (B) with a series dose of 96% *E. palmifolia* extract from six different regions.

In the development of an anticancer drug, selectivity index (SI) is very important to obtain a profile of anticancer activity of an extract on inhibiting cancer cell proliferation without damaging the normal cell. It is termed “selective” if the value of the selectivity index (SI) is >3 (Sutejo et al., 2016). The SI value was used to measure the safety of an anticancer drug (Dewi et al., 2015). The results showed that the SI value of *E. palmifolia* extracts were mostly selective except for extract originated from South Borneo and Central Java. However, *E. palmifolia* extracts originating from East Java and Central Borneo showed a higher selectivity value compared to cisplatin as standard (Table II).
Metabolite Fingerprinting of E. palmifolia (L.) Merr

Correlation between metabolite fingerprinting and in vitro anticancer activity
Anticancer activity of E. palmifolia from six different locations showed different activity even though they were originated from plants of the same type. Environmental factors might affect the content of secondary metabolites quantitatively and qualitatively so that their bioactivity might also vary. This could cause differences in the quality of phyto-medicine (Kim et al., 2011). In this study, the Partial Least Square (PLS) analysis was conducted to determine the correlation of anticancer activity with metabolite fingerprints from six different regions.

The highest value of Variable Importance (VIP) was the metabolite responsible for the activity.
anticancer activity (Figure 8). It could be seen that there were four highest RF values: Rf 0.59 owned by East Java and Central Borneo, Rf 0.93 owned by all locations, Rf 0.34 owned only in East Java, and Rf 0.76 owned by Central and East Java.

Correlation between metabolite fingerprinting and in vitro toxicity

The results of PLS analysis of metabolite fingerprinting and in vitro toxicity of *E. palmifolia* extract were known according to the Variable Importance (VIP). The higher the VIP value, the greater the potency to cause toxicity. The metabolites responsible for the toxicity were metabolites with Rf 0.02 owned by extracts from all locations, Rf 0.44 owned by extracts from East Java, Central Borneo and South Borneo, and Rf 0.59 owned by extracts from East Java and Central Borneo (Figure 9). In the PLS analysis results of metabolite fingerprinting and toxicity, there were similarities to the results of PLS metabolite fingerprinting and anticancer activity i.e. Rf 0.44 and Rf 0.59 as metabolite responsible for anticancer activity and toxicity.

CONCLUSION

E. palmifolia from six different locations showed differences in metabolite fingerprint, activity profile, and toxicity profile. There were five metabolites that were used as candidates of analytical markers i.e. compound with Rf 0.13, Rf 0.28, Rf 0.40, Rf 0.71 and Rf 0.80 for this plant because they were found in all locations. Metabolites responsible for anticancer activity were found in metabolites with Rf 0.34, 0.59, Rf 0.76 and Rf 0.93 that could be proposed as positive markers compound for anticancer activity. Besides that, metabolites responsible for toxicity were metabolites with Rf 0.02, 0.44, and 0.59 that could be proposed as negative markers compound. *E. palmifolia* from East Java had the lowest IC50 (86.98±4.62μg/mL) and a higher SI value (5.5).

ACKNOWLEDGMENT

We would like to say thank you to the Ministry of Religion Research Grant for the International Applied Global Research Scheme with number 4670 in 2018 on behalf of Retno Susilowati and Roihatul Mutiah.

REFERENCES

