A REVIEW ON SUPRAMOLECULAR CHEMISTRY IN DRUG DESIGN AND FORMULATION RESEARCH

Suresh B Vepuri, S. Anbazhagan, D. Divya, D. Padmini

Abstract


Supramolecular chemistry, other way called as intermolecular chemistry disclose the relationship of molecules with environment. It exploits while exposing the physicochemical phenomina that happens when two like or unlike molecules/ions/systems contact each other. Drug action involve the target recognition process and response triggered by the intermolecular complex of drug and target. Drug design therefore require in depth study of intermolecular forces that exist between drug and target. Formulation of the drug or Active Pharmaceutical Ingredient (API) is also regulated by these forces. Compatibility and incompatibility in formulations are nothing but of the effect of the intermolecular forces on physical behavior of systems. Therefore review of intermolecular chemistry in general and its role particularly in pharmaceutical research is presented here for the benefit of the students and research scholars who aspire to work on interdisciplinary projects in the field of pharmacy.
Key words: intermolecular forces, hydrogen bond, drug design, active pharmaceutical ingredient (API), crystal.

Full Text:

Untitled

References


Ainouz, A., Authelin, JR., Billot, P., Lieberman, H. 2009. Modeling and prediction of cocrystal phase diagrams. Int. J. Pharm., 374(1–2):82–89.

Alberto, R., Motterlini, R. 2007. Chemistry and biological activities of CO-releasing molecules (CORMs) and transition metal complexes. Dalton Trans. (17):1651–60.

Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchell, G.F., Smith, J.M., Watson D.G. 1991. The development of version-3 and version-4 of the Cambridge Structural Database system. J. Chem. Inf. Comput. Sci.31:187–204.

Anderson, B.D., Conradi, R.A. 1985. Predictive Relationships in the Water Solubility of Salts of a Nonsteroidal Anti-inflammatory Drug. J. Pharm. Sci. 74 (8):815–820.

Anslyn, E.V.; Dougherty, D.A. 2005. Modern Physical Organic Chemistry, University Science Books.

Aoki, K., Murayama, K., and Nishiyama, H. 1995. Cation-[small pi] interaction between the trimethylammonium moiety and the aromatic ring within lndole-3-acetic acid choline ester, a model compound for molecular recognition between acetylcholine and its esterase: an X-ray study. J. Chem. Soc., Chem. Commun. (21):2221–2222.

Arnal-Hérault, C., Banu, A., Barboiu, M., Michau, M., Van der, L.A. 2007. Amplification and transcription of the dynamic supramole.cular chirality of the guanine quadruplex. Angew Chem Int Ed Engl. 46(23): 4268–72.

Arunkashi, H. K., Jeyaseelan, S., Vepuri, S. B., H. D. Revanasiddappa, H.D., and Devarajegowda, H. C. 2010. Bis[N,Ndimethyl-1-(10H-pyrido[3,2-b][1,4]benzothiazin-10-yl)propan-2-aminium] tetrakis(thiocyanato-N)cobaltate(II). Acta Cryst. E66:m772–m773.

Atmaja, B., Cha, J.N., Marshall, A., Frank, C.W. 2009. Supramolecular assembly of block copolypeptides with semiconductor nanocrystals. Langmuir.25(2): 707–15.

Atwood, J.L., Barbour, L.J., Jerga, A. 2002. Organization of the interior of molecular capsules by hydrogen bonding. Proc Natl Acad Sci U S A. 99(8):4837–41.

Auffinger, P., Hays, F.A., Westhof, E., Ho, P.S. 2004. Halogen bonds in biological molecules. Proc Natl Acad Sci U S A. 101(48):16789–94.

Balzani, V., Credi, A., Venturi, M.V. 2002. The bottom-up approach to molecular-level devices and machines. Chemistry. 8(24):5524–32.

Barberá, J., Puig, L., Romero, P., Serrano, J.L., Sierra, T.2005. Supramolecular helical mesomorphic polymers. Chiral induction through H-bonding. J Am Chem Soc. 127(1):458–64.

Beene, D. L., Brandt, G. S., Zhong, W., Zacharias, N. M., Lester, H. A., and Dougherty, D.A. 2002. Cation-ð Interactions in Ligand Recognition by Serotonergic (5-HT3A) and Nicotinic Acetylcholine Receptors: The Anomalous Binding Properties of Nicotine. Biochemistry. 41 (32): 10262–9.

Beer, P.D., Schmitt, P.1997. Molecular recognition of anions by synthetic receptors. Curr Opin Chem Biol. 1(4):475–82.

Bell, T.W., Hext, N.M. 2004. Supramolecular optical chemosensors for organic analytes. Chem Soc Rev. 33(9):589–98.

Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G., Vaughan, K., and Jollimore, J.V.1999. Interplay of hydrogen bonding and other molecular interactions in determining the crystal packing of a series of anti- - ketoarylhydrazones. Acta Cryst. B. 55:994–1004.

Bhattachar, S.N., Deschenes, L.A., Wesley, J.A. 2006. Solubility: It’s Not Just for Physical Chemists. Drug Discov. Today.11 (21):1012–1018.

Bhupinder, S.S. 2011. Ionic liquids:pharmaceutical and biotechnological application. AJPBR. 1:345–411.

Bighley, L.D., Berge, S.M., Monkhouse, D.C. Salt Forms of Drugs and Absorption. In Swarbrick, J., and Boylan, J.C. ed. Encyclopedia of Pharmaceutical Technology. New York: Marcel Dekker. 453–499.

Bruno, I.J., Cole, J.C., Lommerse, J.P., Rowland, R.S., Taylor, R., Verdonk, M.L. 1997. ISOSTAR: a library of information about nonbonded interactions. J. Comput. Aided Mol. Des. 11:525–537.

Chen, B., Piletsky, S., Turner, A.P. 2002. High molecular recognition: design of “Keys.” Comb Chem High Throughput Screen. 5(6):409–27.

Dalrymple, S.A., Parvez, M., Shimizu, G.K. 2002. Intra- and intermolecular secondsphere coordination chemistry: formation of capsules, half-capsules, and extended structures with hexaaquo- and hexaamminemetal ions. Inorg Chem. 41(26):6986–96.

Dan, L., Xueping, F., Siling, W., Tongying, J., Desen, S. 2006. Increasing solubility and dissolution rate of drugs via eutectic mixtures: itraconazole–poloxamer188 system. AJPS.1:213–221.

Davis, J.T., 2010. Supramolecular chemistry: Anion transport as easy as pi. Nature Chemistry. 2:516–517.

De Greef, T.F., Smulders, M.M., Wolffs, M., Schenning, A.P., Sijbesma, R.P., Meijer, E.W. 2009. Supramolecular polymerization. Chem Rev. 109(11):5687–754.

Deng, Y., Deng, Y., Barrientos, V.A.L., Billes,F., Dixon, J. B. 2010. Bonding mechanisms between aflatoxin B1 and smectite. Appl Clay Sci. 50(1):92–98.

Desiraju, G.R. 1995. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew. Chem. Int. Ed. Engl. 34(21):2311–2327.

Devarajegowda, H. C., Vepuri, S. B., VinduVahini, M., Kavitha, H.D., and Arunkashi, H. K. 2010. Nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone monohydrate. Acta Cryst.E66:o2237–o2238.

Diederich, F., Felber, B. 2002. Supramolecular chemistry of dendrimers with functional cores. Proc Natl Acad Sci USA.99(8):4778–81.

Dougherty, Dennis, A. 1996. Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp.Science.271 (5246): 163–168.

Elangannan, A., Gautam, R.D., Roger, A.K, Joanna, S., Steve, S., Ibon, A., David, C.C., Robert, H.C., Joseph, J.D., Pavel, H., Henrik, G.K., Anthony, C.L., Benedetta, M., David, J.N. 2011. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem. 83:1637–1641.

Ermias, G. 2010. Pharmaceutical eutectics: characterization and evaluation of tolbutamide and haloperidol using thermal, analylitical and complementary techniques. University of Toledo.

Ewelina , M.W., William, D.B., Timothy, M.K.2012. The importance of London dispersion forces in crystalline magnesium nitrate hexahydrate. Inorg Chim Acta.389:176–182.

Fenske, T., Korth, H.G., Mohr, A., Schmuck ,C. 2012. Advances in switchable supramolecular nanoassemblies. Chemistry. 18(3):738–55.

Ferguson, Marcelle L. 2004. Dipole-induced dipole interactions for molecular recognition in biological macromolecules. In The 228th ACS National Meeting.

Florence, A.T., and Attwood, D., 1998. Properties of the Solid State. In Physicochemical Principles of Pharmacy. London: Macmillan Press Ltd. 5–34.

Frišèiæ, T. 2012. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metalorganic frameworks. Chem Soc Rev. 41(9): 3493–510.

Friscic, T., Jones, W. 2009. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst Growth Des.9:1621–1637.

Garcia-Garibay, M.A. 2005. Crystalline molecular machines: encoding supramolecular dynamics into molecular structure. Proc Natl Acad Sci U S A. 102(31):10771–6.

Goldberg, A.H., Gibaldi, M., Kanig, J.L. 1966. Increasing dissolution rates and gastro intestinal absorption of drugs via solid solution and eutectic mixture, experimental evaluation of eutectic mixture: urea-acetaminophen system. J.Pharm sci.55:482–487.

Haleblian, J.K. 1975. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J.Pharm. Sci. 64(8):1269–1288.

Hathwar, V.R., ROOPAN, S.M., SUBASHINI, R., Khan, F.N., and Row, T.N.G. 2010. Analysis of Cl…Cl and C–H…Cl intermolecular interactions involving chlorine in substituted 2-chloroquinoline derivatives. J. Chem. Sci. 122:677–685.

Hirst, A.R., Escuder, B., Miravet, J.F., Smith, D.K. 2008. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed Engl. 47(42):8002–18.

Hof , F., Rebek, J.Jr. 2002. Molecules within molecules: recognition through selfassembly. Proc Natl Acad Sci U S A. 99(8):4775–7.

Horst, J.H., Deij, M.A., Cains, P.W. 2009. Discovering new co-crystals. Cryst Growth Des. 9:1531–1537.

Hunter, C.A., Sanders, J.K.M. 1990. The nature of .pi.-.pi. Interactions. J. Am. Chem. Soc. 112 (14):5525–5534.

Ikkala, O., ten, B.G. 2002. Functional materials based on self-assembly of polymeric supramolecules. Science. 295(5564):2407–9.

Jing, B., Chen, X., Wang, X., Yang, C., Xie, Y., Qiu.H. 2007. Self-assembly vesicles made from a cyclodextrin supramolecular complex. Chemistry. 13(32):9137–42.

Juppo, A.M., Boissier, C., Khoo, C. 2003. Evaluation of solid dispersion particles prepared with SEDS. Int.J.Pharm. 250:385–401.

Kathrina, B., Julia, S.; Whitney, L. H., Douglas, R. M., Robin, D.R. 2011. Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chem. Commun. 47:2267–2269.

Kato, T., Mizoshita, N., Kishimoto, K. 2005. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed Engl. 45(1):38–68.

Klebe, M.G. 1994. The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands. J. Mol. Biol. 237:212–235.

Lehn, J.M.1978. Cryptates: inclusion complexes of macropolycyclic receptor molecules.Pure Appl Chem. 50(9-10):871–892.

Lehn, J.M.1985. Supramolecular chemistry: receptors, catalysts, and carriers. Science.227(4689): 849–56.

Leuner, C., Dressman, J. 2000. Improving drug solubility for oral delivery using solid dispersions. Eur.J.Pharm.50:47–60.

Leyton, L., Quest, A.F. 2002. Introduction to supramolecular complex formation in cell signaling and disease. Biol Res. 35(2):117–25.

Liu G.Y., Amro, N.A. 2002. Positioning protein molecules on surfaces: a nanoengineering approach to supramolecular chemistry. Proc Natl Acad Sci U S A. 99(8):5165–70.

Ludden, M.J., Reinhoudt, D.N., Huskens, J. 2006. Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials. Chem Soc Rev. 35(11):1122–34.

Matthias, M. 2008. Ionic Liquids in the Chemical Synthesis of Pharmaceuticals. PTSM. 4(10).

McNaught, A.D., and Wilkinson, A. IUPAC. Compendium of Chemical Terminology, (the “Gold Book”) 2nd ed. Nic, M., Jirat, J., Kosata, B., Jenkins, A. ed., Blackwell Scientific Publications, Oxford (1997).

Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. 2008. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed Engl. 47:6114–6127.

Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. 2005. Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding. Acc. Chem. Res.38:386–395.

Metrangolo, P., Resnati, G. 2008. Halogen versus Hydrogen. Science. 321:918–919.

Morrison, H.G., Sun, C.C., Neervannan, S. 2009. Characterisation of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm. 378: 136–139.

Moulton, B., and Zaworotko, M.J. 2001. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101: 1629–1658.

Murcko, M.A. 1997. Recent advances in ligand design methods. Rev. Comp. Chem. 23(3): 1–66.

Murray-Rust, P., Glusker, J.P. 1984. Directional hydrogen bonding to sp2- and sp3- hybridized oxygen atoms and its relevance to ligand-macromolecule interactions. J. Am. Chem. Soc. 106:1018–1025.

Nakamura, E., Isobe, H. 2003. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res. 36(11): 807– 15.

Nierengarten, Jean-François. 2001. Ring-Opened Fullerenes: An Unprecedented Class of Ligands for Supramolecular Chemistry. Angew Chem Int Ed Engl. 40(16):2973–2974.

Okamoto, K., Chithra, P., Richards, G.J., Hill, J.P., Ariga, K. 2009. Self-assembly of optical molecules with supramolecular concepts. Int J Mol Sci. 10(5):1950–66.

Pacheco, Ogari, R., Elisa, R., Valter, M., Jose, A. Ternary and quaternary eutectic mixtures of local anesthetics substances. US7763653 (Issue date Jul 27, 2010)

Peter, D. Eutectic liquid drug formulation. US 20070224261 (Issue date Sep 27, 2007)

Pinalli, R., Nachtigall, F.F., Ugozzoli, F., Dalcanale, E. 1999. Supramolecular Sensors for the Detection of Alcohols. Angew Chem Int Ed Engl. 38(16):2377– 2380.

Politzer, P., Lane, P., Concha, M.C., Ma, Y., Murray, J.S. 2007. An Overview of Halogen Bonding. J. Mol. Model. 13:305– 311.

Quiñonero, D., Garau, C., Rotger, C., Frontera, A., Ballester, P., Costa, A., and Deyà, P.M. 2002. Anion-ð Interactions: Do They Exist? Angew. Chem. Int. Ed. 41 (18): 3389.

Remenar, J.F., Sherry, L., Morissette, Matthew, L. P., Brian, M., Michael, J. M., Héctor, R. G., Örn, A. 2003. Crystal Engineering of Novel Cocrystals of a Triazole Drug with 1,4-Dicarboxylic Acids. J.Am.chem.soc. 125(28):8456–8457.

Rossmann, M.G., Argos, P. 1981. Protein folding. Annu Rev Biochem. 50:497–532.

Rudkevich, D.M. 2004. Emerging supramolecular chemistry of gases. Angew Chem Int Ed Engl. 43(5): 558–71.

Sabiruddin, M., Inna, M., Jyrki, H., Jouko, Y. 2008. Co-crystals: An emerging approach for enhancing properties of pharmaceutical solids. Dosis. 24(2): 90–96.

Saha, S., Stoddart , J.F. 2007. Photo-driven molecular devices. Chem Soc Rev. 36(1):77–92.

Sakai, N., Matile, S. 2004. Polarized vesicles in molecular recognition and catalysis. Chem Biodivers. 1(1):28–43.

Salditt, T., Schubert, U.S. 2002. Layer-by-layer self-assembly of supramolecular and biomolecular films. J Biotechnol. 90(1):55–70.

Scott, L.C., Leonard, J. C., Jeanette, T.D., Valeriya, N.S.; Barbara, C. S., Patrick, S.G. 2004. Crystal Engineering Approach To Forming Cocrystals of Amine Hydrochlorides with Organic Acids. Molecular Complexes of Fluoxetine Hydrochloride with Benzoic, Succinic, and Fumaric Acids. J. Am. Chem. Soc. 126: 3335–13342.

Seidel, S.R., Stang, P.J. 2002. High-symmetry coordination cages via self-assembly. Acc Chem Res. 35(11):972–83.

Serpe, M.J., Craig, S.L. 2007. Physical organic chemistry of supramolecular polymers. Langmuir. 23(4):1626–34.

Seshadri, N. Deep eutectic solvents as potential formulation vehicles in early preclinical studies. 2007. AAPS Annual Meeting & Exposition.

Shan, N., Zaworotko, M.J. 2008. The role of cocrystals in pharmaceutical science. Drug Discov Today. 13(9-10): 440–6.

Shi, X., Barkigia, K.M., Fajer, J., Drain, C.M. 2001. Design and synthesis of porphyrins bearing rigid hydrogen bonding motifs: highly versatile building blocks for self-assembly of polymers and discrete arrays. J Org Chem. 66(20): 6513–22.

Sisson, A.L., Shah, M.R., Bhosale, S., Matile, S. 2006. Synthetic ion channels and pores (2004-2005). Chem Soc Rev. 35(12):1269–86.

Stahly, G.P. 2009. A survey of cocrystals reported prior to 2000. Cryst Growth Des. 9:4212–4229.

Stanto, M. K., Tufekcic, S., Morgan, C., and Bak, A. 2009. Drug Substance and Former Structure Property Relationships in 15 Diverse Pharmaceutical Co-Crystals. Cryst Growth Des. 9(3):1344–1352.

Steed, J.W. 2009. Coordination and organometallic compounds as anion receptors and sensors. Chem Soc Rev. 38(2): 506–19.

Steel, P.J. 2005. Ligand design in multimetallic architectures: six lessons learned. Acc Chem Res. 38(4): 243–50.

Steiner, T. 2002. The hydrogen bond in the crystalline magnesium nitrate hexahydrate solid state. Angew Chem Int Ed Engl. 41(1): 49–76.

Stoimenovski, J., MacFarlane, D.R., Bica, K., Rogers, R.D. 2010. Crystalline Vs ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm.Res.27:521–526.

Stott, P.W., Williams, A.C., Barry, B.W. 1998. Transdermal delivery from eutectic systems : enhanced permeation of a model drug Ibuprofen. J Control Release. 50:297–308.

Sygula, A., Fronczek, F. R., Sygula, R., Rabideau, P. W., and Olmstead, M. M. 2007. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc. 129 (13):3842–3843.

Tezcan, F.A., Winkler, J.R., Gray, H.B. 1998. Effects of Ligation and Folding on Reduction Potentials of Heme Proteins.J Am Chem Soc. 120: 13383–13388.

The Nobel Prize in Chemistry 1987. Nobelprize.org. http://www.nobelprize.org/nobel_prize s/chemistry/laureates/1987/.[Accessed December 11, 2011].

Trask, A.V., and Jones, W. 2005. Crystal engineering of organic cocrystals by the solid-state grinding approach. Top. Curr. Chem. 254: 41–70.

Trask, A.V., Motherwell, W.D.S., and Jones, W. 2005. Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration. Cryst Growth Des. 5(3):1013–1021.

Vineet, K., Malhotra, S.V. 2010. Ionic liquids as pharmaceutical salts. In Malhotra, S. ed. Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology. ACS Symposium Series. 1-12.

Voegtle, H.L., Sono, M., Adak, S., Pond, A.E., Tomita, T., Perera, R., Goodin, D.B., Ikeda-Saito, M., Stuehr, D.J., Dawson, J.H. 2003. Spectroscopic characterization of five- and six-coordinate ferrous-NO heme complexes. Evidence for heme Feproximal cysteinate bond cleavage in the ferrous-NO adducts of the Trp-409Tyr/Phe proximal environment mutants of neuronal nitric oxide synthase. Biochemistry. 42:2475–2484.

Wasserscheid, P., Welton, T. ed. 2003. Ionic Liqiuds in Synthesis, Wiley-VCH: Weinheim, Germany.

Wasserscheid, W., Kim, W.A. 2000. Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Chem. Int. 39:3772.

Whitney, L. H., Marcin, S., Héctor, R., Richard, P., Swatloski, Scott, K. S., Daniel, T. D., Juliusz, P., Judith, E. G., Richard, D. C., Morgan, D. S., James, H. D., Robin, D.R. 2007. The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem. 31:1429–1436.

Whitney, L. H., Robin, D.R. 2007. Ionic liquids then and now: From solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn. 80:2262–2269.

Yagai, S., Karatsu, T., Kitamura, A. 2005. Photocontrollable self-assembly. Chemistry. 11(14):4054–63. Yakovchuk, P., Protozanova, E., Frank-Kamenetskii, M.D. 2006. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34(2):564–74.

Zhang, X., Wang, C. 2011. Supramolecular amphiphiles. Chem Soc Rev. 40(1):94–101.

Zhong, L., Wen, X., Rabinowitz, T.M., Russell, B.S., Karan, E.F., Bren, K.L. 2004. Heme axial methionine fluxionality in Hydrogenobacter thermophilus cytochrome c552. Proc Natl Acad Sci. 101: 8637–8642.




DOI: http://dx.doi.org/10.14499/indonesianjpharm0iss0pp131-150

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 INDONESIAN JOURNAL OF PHARMACY

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

                                               

web
analytics View My Stats