Anticancer Molecules from Catharanthus roseus

Zarani M Taher, Farid Agouillal, Lim J. R, Aina Q Marof, Daniel Joe Dailin, Muktiningsih Nurjayadi, Ezzaty NM Razif, Sara E Gomaa, Hesham Ali El Enshasy

Abstract


Catharanthus roseus is an important medicinal plant found in various parts of the world and the bioactive compound has been extracted and used as anti-cancer agent to treat the cancer over decades. However, the extraction of bioactive compound also results in the generation of large quantities of pollution with wasted solvents. Toxic pollution occurs when synthetic chemicals are discharged or natural chemicals accumulate to toxic levels in the environment, causing reductions in wildlife numbers, degrading ecosystem functions and threatening human health. This review covers the extraction and phytochemical obtained leading to chemical compounds related to anti-cancer property of C. roseus. Additionally, recent advances of using biological cell cultures were also addressed. Thus, this work can be used for further investigation of C. roseus to be undertaken in future for its anti-cancer property further development and efficient production in drug industry


Keywords


C. roseus; Anticancer; Extraction; Phytochemical; Tissue culture

Full Text:

PDF

References


Almagro L, Fernández-Pérez F, Pedreño MA. (2015). Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules. 20(2): 2973-3000.

Attard G, Greystoke A, Kaye S, De Bono J. (2006). Update on tubulin-binding agents. Pathologie Biologie. 54(2): 72-84.

Azizah AM, Nor Saleha IT, Noor Hashimah A, Asmah Z, Mastulu W. (2016). Malaysian National Cancer Registry Report 2007-2011: Malaysia Cancer Statistic, Data and Figure. Malaysia: National Cancer Institute.

Babu NS, Reddy SM. (2014). Impact of solvents leading to environmental pollution. Journal of Chemical and Pharmaceutical Sciences. Special issue 3, 132-35

Bahleda R, Varga A, Bergé Y, Soria JC, Schnell D, Tschoepe I, Delord JP. (2018). Phase I open-label study of afatinib plus vinorelbine in patients with solid tumours overexpressing EGFR and/or HER2. British Journal of Cancer. 118(3): 344-52.

Barbier P, Tsvetkov PO, Breuzard G, Devred F. (2014). Deciphering the molecular mechanisms of anti-tubulin plant derived drugs. Phytochemistry Reviews. 13(1): 157-169.

Bates DJ, Danilov AV, Lowrey CH, Eastman A. (2013). Vinblastine rapidly induces NOXA and acutely sensitizes primary chronic lymphocytic leukemia cells to ABT-737. Molecular Cancer Therapeutics. 12(8): 1504-14.

Bolanos-Garcia VM. (2009). Assessment of the mitotic spindle assembly checkpoint (SAC) as the target of anticancer therapies. Current Cancer Drug Targets. 9(2): 131-41.

Coderch C, Morreale A, Gago F. (2012). Tubulin-based structure-affinity relationships for antimitotic Vinca alkaloids. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 12(3): 219-25.

Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Sottomayor M. (2008). Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiology. 146(2): 403-17.

Das S, Sharangi AB. (2017). Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry. 6(5): 1695-701.

Ducos J-P, Terrier B, Courois D. (2009). Disposable bioreactors for plant micropropagation and mass plant cell culture. Advances in Biochemical Engineering and Biotechnology. 115: 89-115.

Eli Lilly Company, Neue Aminderivate von Vinblastin, Leurosidin und Leurocristin und Verfahren zu ihrer Herstellung (1974. DE Patent 22415980, 1974; Chemistry Abstract. 82, 579967b.

Falcao MA, Scopel R, Almeida RN, do Espirito Santo AT, Franceschini G, Garcez JJ, Cassel E. (2017). Supercritical fluid extraction of vinblastine from Catharanthus roseus. The Journal of Supercritical Fluids. 129: 9-15.

Fatima S, Mujib A, Tonk, D. (2015). NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: a case of stress signalling as evidence by antioxidant enzymes activities. Plant Cell, Tissue and Organ Culture (PCTOC). 121(2): 445-458.

Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, . . . Knossow M. (2005). Structural basis for the regulation of tubulin by vinblastine. Nature. 435(7041): 519.

Hanafy MS, Matter MA, Asker MS, Rady MR. (2016). Production of indole alkaloids in hairy root cultures of Catharanthus roseus L. and their antimicrobial activity. South African Journal of Botany. 105: 9-18.

Islam M, Iskander MN. (2004). Microtubulin binding sites as target for developing anticancer agents. Mini Reviews in Medicinal Chemistry. 4(10): 1077-104.

Jeong WT, Lim HB. (2018). A UPLC-ESI-Q-TOF method for rapid and reliable identification and quantification of major indole alkaloids in Catharanthus roseus. Journal of Chromatography B. 1080: 27-36.

Jordan MA. (2002). Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Current Medicinal Chemistry-Anti-Cancer Agents. 2(1): 1-17.

Jordan MA, Wilson L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer. 4(4): 253-65.

Kabesh K, Senthilkumar P, Ragunathan R, Kumar RR. (2015). Phytochemical analysis of Catharanthus roseus plant extract and its antimicrobial activity. International Journal of Pure and Applied Bioscience. 3(2): 162-72.

Keglevich P, Hazai L, Kalaus G, Szántay C. (2012). Modifications on the basic skeletons of vinblastine and vincristine. Molecules. 17(5): 5893-914.

Kotland A, Chollet S, Diard C, Autret JM, Meucci J, Renault JH, Marchal L. (2016). Industrial case study on alkaloids purification by pH-zone refining centrifugal partition chromatography. Journal of Chromatography A. 1474: 59-70.

Krzakowski M, Ramlau R, Jassem J, Szczesna A, Zatloukal P, Von Pawel J, . . . Douillard JY. (2010). Phase III trial comparing vinflunine with docetaxel in second-line advanced non–small-cell lung cancer previously treated with platinum-containing chemotherapy. Journal of Clinical Oncology. 28(13): 2167-173.

Liu Z, Wu HL, Li Y, Gu HW, Yin XL, Xie LX, Yu RQ. (2016). Rapid and simultaneous determination of five Vinca alkaloids in Catharanthus roseus and human serum using trilinear component modeling of liquid chromatography–diode array detection data. Journal of Chromatography B. 1026: 114-23.

Maqsood M, Abdul M. (2017). Yeast extract elicitation increases vinblastine and vincristine yield in protoplast derived tissues and plantlets in Catharanthus roseus. Revista Brasileira de Farmacognosia. 27(5): 549-56.

Nejat N, Valdiani A, Cahill D, Tan Y-H, Maziah M, Abiri R. (2015). Ornamental exterior versus therapeutic interior of Madagascar Periwinkle (Catharanthus roseus): The two faces of a versatile herb. The Scientific World Journal. Volume 2015, Article ID 982412.

Miyamoto DT, Perlman ZE, Mitchison TJ, Shirasu-Hiza M. (2003). Dynamics of the mitotic spindle-potential therapeutic targets. Progress in Cell Cycle Research. 5:349-60.

Moon SH, Mistry B, Kim DH, Pandurangan M. (2017). Antioxidant and anticancer potential of bioactive compounds following UV-C light-induced plant cambium meristematic cell cultures. Industrial Crops and Products. 109: 762-72.

Morris PG, Fornier MN. (2008). Microtubule active agents: beyond the taxane frontier. Clinical Cancer Research. 14(22): 7167-72.

Moudi M, Go R, Yien CYS, Nazre M. (2013). Vinca alkaloids. International Journal of Preventive Medicine. 4(11): 1231.

Mujib A, Ali M, Isah T, Dipti (2014). Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – A comparative study. Saudi Journal of Biological Sciences. 21: 442-49.

Nammi S, Boini MK, Lodagala SD, Behara RBS. (2003). The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complementary and Alternative Medicine. 3(1): 4.

Nazir T, Taha N, Islam A, Abraham S, Mahmood A, Mustafa M. (2016). Monocytopenia; Induction by vinorelbine, cisplatin and doxorubicin in breast, non-small cell lung and cervix cancer patients. International Journal of Health Sciences. 10(4): 542-47.

Ngan VK, Bellman K, Panda D, Hill BT, Jordan MA, Wilson L. (2000). Novel actions of the antitumor drugs vinflunine and vinorelbine on microtubules. Cancer Research. 60(18): 5045-051.

Nirmala MJ, Samundeeswari A, Sankar PD. (2011). Natural plant resources in anti-cancer therapy-A review. Research in Plant Biology. 1(3).1-14

Okouneva T, Hill BT, Wilson L, Jordan MA. (2003). The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Molecular Cancer Therapy. 2: 427-36.

Ong HC, Ahmad N, Milow P. (2011). Traditional medicinal plants used by the temuan villagers in Kampung Tering, Negeri Sembilan, Malaysia. Studies on Ethno-Medicine. 5(3): 169-73.

Pan Q, Saiman MZ, Mustafa NR, Verpoorte R, Tang K. (2016). A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants. Journal of Chromatography B. 1014: 10-16.

Patel DK, Kumar R, Laloo D, Hemalatha S. (2012). Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pacific Journal and Tropical. 2(3): 239-50.

Perez EA. (2009). Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Molecular Cancer Therapeutics.8: 2086-95.

Qiu L, Dong C, Kan X. (2018). lymphoma-targeted treatment using a folic acid-decorated vincristine-loaded drug delivery system. Drug design, Development and Therapy. 12: 863-72.

Rai V, Tandon PK, Khaltoon S. (2014). Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine. BioMed Research International. Volume 2014, Article ID 934182, 10 pages.

Sain M, Sharma V. (2013). Catharanthus roseus (An anti-cancerous drug yielding plant) – A review of potential therapeutic properties. International Journal of Pure and Applied Bioscience. 1: 139-42.

Schinzari G, Rossi E, Pierconti F, Garufi G, Monterisi S, Strippoli A, . . . Barone C. (2018). Monoinstitutional real world experience in management of Vinflunine as second line therapy for transitional cell carcinoma of the urothelium. Oncotarget, 9(9): 8765.

Schweizer F, Colinas M, Pollier J, Van Moerkercke A, Bossche RV, de Clercq R, Goossens A. (2018). An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabolic Engineering. 48 :150-62.

Schutz FA, Bellmunt J, Rosenberg JE, Choueiri TK. (2011). Vinflunine: drug safety evaluation of this novel synthetic Vinca alkaloid. Expert Opinion On Drug Safety. 10(4): 645-53.

Sertel S, Fu Y, Zu Y, Rebacz B, Konkimalla B, Plinkert PK, Efferth, T. (2011). Molecular docking and pharmacogenomics of Vinca alkaloids and their monomeric precursors, vindoline and catharanthine. Biochemical Pharmacology. 81(6): 723-35.

Siddiqui MJ, Ismail Z, Aisha AFA, Majid AM. (2010). Cytotoxic activity of Catharanthus roseus (Apocynaceae) crude extracts and pure compounds against human colorectal carcinoma cell line. International Journal of Pharmacology. 6(1), 43-7.

Sharangi SD. (2017). Madagascar Periwinkle (C. roseus L.): Diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry. 1695-1701.

Sottomayor M, Ros Barcelo A. (2005) The Vinca alkaloids: from biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells. In: Attaur R., editor. Studies in natural products chemistry (Bioactive natural products). Amsterdam: Elsevier Science Publisher. 813-57.

Kumar S, Singh A, Kumar B, Singh B, Bahadur L, Lal M. (2018). Simultaneous quantitative determination of bioactive terpene indole alkaloids in ethanolic extracts of Catharanthus roseus (L.) G. Don by ultrahigh performance liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 151: 32-41.

Taha HS, Shamas KA, Nazif NM, Seif El-Nasr MM (2014). In vitro studies on egyptian Catharanthus roseus (L.) G.Don V: Impact of stirred reactor physical factors on achievement of cells proliferation and vincristine and vinblastine accumulation. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 5: 330-40.

Takanari H, Yosida T, Morita J, Izutsu K, Ito T. (1990). Instability of pleomorphic tubulin paracrystals artificially induced by Vinca alkaloids in tissue‐cultured cells. Biology of the Cell. 70(1‐2): 83-90.

Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, Awang K. (2015). Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia. 102: 182-88.

Tonk D, Mujin A, Maqsood M, Ali M, Zafar, N. (2016). Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell, Tissue and Organ Culture (PCTOC). 126(2): 291-303.

Van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. (2004). The Catharanthus alkaloids: pharmacognosy and biotechnology. Current Medicinal Chemistry. 11(5): 607-28.

Verma A, Hartonen K, Riekkola ML. (2008). Optimisation of supercritical fluid extraction of indole alkaloids from Catharanthus roseus using experimental design methodology-comparison with other extraction techniques. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques. 19(1): 52-63.

Verma P, Mathur AK, Shanker K. (2012). Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Cathranthus roseus. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 146: 27-40.

Wang L, He HP, Di YT, Zhang Y, Hao XJ. (2012). Catharoseumine, a new monoterpenoid indole alkaloid possessing a peroxy bridge from Catharanthus roseus. Tetrahedron Letters. 53(13), 1576-1578.

Wang CH, Wang GC, Wang Y, Zhang XQ, Huang XJ, Zhang DM, . . . Ye WC. (2012). Cytotoxic dimeric indole alkaloids from Catharanthus roseus. Fitoterapia. 83(4): 765-69.

Wang XD, Li CY, Jiang MM, Li D, Wen P, Song X, . . . He ZD. (2016). Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine. 23(6): 641-53.

Wojdylo A, Oszmiański J, Teleszko M, Sokół-Łętowska A. (2013). Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. International Journal of Food Sciences and Nutrition. 64(6): 749-56.

World Health Organization. Global Health Observatory. Geneva: World Health Organization; 2018. who.int/gho/database/en/. Accessed July 20, 2018.




DOI: http://dx.doi.org/10.14499/indonesianjpharm30iss3pp147

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Indonesian Journal of Pharmacy

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

web
analytics View My Stats