Effects of Antioxidant, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase of The Extract and Fraction From Turbinaria decurrens Bory.

Arief Nurrochmad, Wirasti Wirasti, Arifin Dirman, Endang Lukitaningsih, Adillah Rahmawati, Nanang Fakhrudin

Abstract


Brown macroalgae (BM) which contain fucoxanthin exhibited high antioxidant activity. This study was performed to examine antioxidant, anti-collagenase, anti-elastase, anti-tyrosinase activities, and effect on cell viability of Human Dermal Fibroblast adult (HDFa) of BM, Turbinaria decurrens Bory. T. decurrens dried powder were macerated by ethanol to obtain extract (ETD) and was fractination by column chromatography to obtain fraction (FTD). Fucoxanthin content was determined using HPLC. The antioxidant activities, anti-collagenase, anti-elastase, and tyrosinase inhibitory assay were performed. The effect of ETD and fucoxanthin standard on cell viability were conducted on HDFa cell-induced by hydrogen peroxide (H2O2). The HPLC analysis showed that ETD and FTD contain fucoxanthin of 284.9±3.3µg/g and of 653.4±30.6µg/g dry-weight, respectively. The antioxidant assay showed that ETD and FTD produced high antioxidant activity by ferric reducing antioxidant power (FRAP) and b-carotene bleaching (BCB) methods that were comparable to fucoxanthin. ETD exhibited significantly higher tyrosinase inhibitory than kojic acid (p<0.01), while FTD had a comparable effect to kojic acid. The result also revealed that ETD and FTD produced anti-elastase and anti-collagenase (matrix metalloproteinase-1 (MMP-1). Fucoxanthin and ETD were able to maintain cell viability on HDFa cell-induced H2O2. This study suggests that T. decurrens may be effective to prevent skin aging and wrinkle formation, possibly through the antioxidant activity and maintain cell viability of fibroblast.

 


Keywords


Turbinaria decurrens Bory.; fucoxanthin; antioxidant; anti-collagenase; anti-elastase; anti-tyrosinase

Full Text:

PDF

References


Balboa EM., Conde E., Moure A., Falqué E., Domínguez H., 2013. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry. 138(2–3):1764–1785.

Benzie IFF., Strain JJ., 1998. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299:15–27.

Benzie IF., Strain JJ., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1):70–76.

Cornish M., Garbary D., 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. Algae, 25(4):155–171.

Farage MA., Miller KW., Elsner P., Maibach, HI., 2008. Intrinsic and extrinsic factors in skin ageing: a review. International Journal of Cosmetic Science, 30(2):87–95.

Fisher, G. J., Kang, S., Varani, J., Bata-Csorgo, Z., Wan, Y., Datta, S., & Voorhees, J. J. (2002). Mechanisms of photoaging and chronological skin aging. Archives of Dermatology, 138(11):1462–1470.

Gilchrest BA., 1996. A review of skin ageing and its medical therapy. The British Journal of Dermatology, 135(6):867–875.

Heo SJ., Jeon YJ., 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. Journal of Photochemistry and Photobiology B: Biology, 95(2):101–107.

Heo SJ., Ko SC., Kang SM., Kang HS., Kim JP., Kim SH., Lee KW., Cho MG., Jeon, YJ., 2008. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. European Food Research and Technology, 228(1):145–151.

Inomata S., Matsunaga Y., Amano S., Takada, K., Kobayashi, K., Tsunenaga, Nishiyama T, Kohno Y, Fukuda M., 2003. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. Journal of Investigative Dermatology, 120(1):128–134.

Jaswir I., Dedi N., Salleh HM., Taher M., Miyashita K., Ramli N., 2013. Analysis of fucoxanthin content and purification of all-trans-fucoxanthin from Turbinaria turbinata and Sargassum plagyophyllum by SiO2 open column chromatography and reversed phase HPLC. Journal of Liquid Chromatography, 6076:1340–1354.

Jenkins G., 2002. Molecular mechanisms of skin ageing. Mechanisms of Ageing and Development, 123(7):801–810.

Joe MJ., Kim SN., Choi HY., Shin WS., Park GM., Kang DW., Kim YK., 2006. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biological & Pharmaceutical Bulletin, 29(8):1735–1739.

Kanda H., Kamo Y., Machmudah S., Wahyudiono, Goto M., 2014. Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether. Marine Drugs, 12(5):2383–2396.

Karim AA., Azlan A., Ismail A., Hashim P., Abd Gani SS., Zainudin BH., Abdullah NA., 2014. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complementary and Alternative Medicine, 14(1):381.

Kelman D., Posner EK., McDermid KJ., Tabandera NK., Wright PR., Wright AD., 2012. Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2):403–416.

Landau M., 2007. Exogenous factors in skin aging. Current Problems in Dermatology, 35:1–13.

Lin JW., Chiang HM., Lin YC., Wen KC., 2008. Natural products with skin - Whitening effects. Journal of Food and Drug Analysis, 16(2):1–10.

Lukitaningsih E., Ulrike H., 2014. Bioactive Compounds In Bengkoang (Pachyrhizus erosus) as Antioxidant and Tyrosinase Inhibiting Agents. Indonesian Journal of Pharmacy, 25(2):68–75.

Masaki H., 2010. Role of antioxidants in the skin: Anti-aging effects. Journal of Dermatological Science, 58(2):85–90.

Nomura T., Kikuchi M., Kubodera A., Kawakami Y., 1997. Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochemistry and Molecular Biology International, 42(2):361–370.

Quan T., Qin Z., Xia W., Shao Y., Voorhees J J., Fisher GJ., 2009. Matrix-degrading metalloproteinases in photoaging. The Journal of Investigative Dermatology. Symposium Proceedings, 14(1):20–24.

Rahmawati A. 2017. Aktivitas Ekstrak Etanol Rumput Laut Coklat (Turbinaria decurrens) Terhadap Viabilitas Sel Human Dermal Fibroblast Adult (HDFa) Sebagai Salah Satu Uji Aanti Aging. Skripsi, Fakultas Farmasi, Universitas Gadjah Mada.

Rangkadilok N., Sitthimonchai S., Worasuttayangkurn L., Mahidol C., Ruchirawat M., Satayavivad J., 2007. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food and Chemical Toxicology, 45(2):328–336.

Rinnerthaler M., Bischof J., Streubel MK., Trost A., Richter K., Breitenbach M., Eckl P., 2015. Oxidative Stress in Aging Human Skin. Biomolecules, 5:545–589.

Satoh T., Sakai N., Enokido Y., Uchiyama Y., Hatanaka H., 1996. Free radical-independent protection by nerve growth factor and Bcl-2 of PC12 cells from hydrogen peroxide-triggered apoptosis. Journal of Biochemistry, 120(3):540–546.

Schlotmann K., Kaeten M., Black AF., Damour O., Waldmann-Laue M., Forster T., 2001. Cosmetic efficacy claims in vitro using a three-dimensional human skin model. Int. J.Cosmetic Science, 23(5):309–318.

Sciences EL., 2016a. Matrix Metalloproteinase-1 (MMP-1) colorimetric drug discovery kit. Retrieved May 8, 2016, from http://www.enzolifesciences.com/BML-AK404/matrixmetalloproteinase-1-%0Ammp-1-colorimetric-drug-discovery-kit

Sciences EL., 2016b. Neutrophil elastase colorimetric drug discovery kit. Retrieved June 10, 2016, from http://www.enzolifesciences.com/BML-AK497/neutrophil-elastasecolorimetric-drugdiscovery-kit%0A

Seifried HE., Anderson DE., Fisher EI., Milner JA., 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry, 18(9):567–579.

Shimoda H., Tanaka J., Shan SJ., Maoka T., 2010. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. The Journal of Pharmacy and Pharmacology, 62(9):1137–1145.

Sternlicht MD., Werb Z., 2001. How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17:463–516.

Susanto E., Suhaeli A., Abe M., 2016. Lipids, Fatty Acids, and Fucoxanthin Content from Temperate and Tropical Brown Seaweeds. Aquatic Procedia, 7:66–75.

Svobodova A., Walterova D., Vostalova J., 2006. Ultraviolet light induced alteration to the skin. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 150(1):25–38.

Takaichi S., 2011. Carotenoids in algae: distributions, biosyntheses and functions. Marine Drugs, 9(6):1101–1118.

Urikura I., Sugawara T., Hirata T., 2011. Protective effect of Fucoxanthin against UVB-induced skin photoaging in hairless mice. Bioscience, Biotechnology, and Biochemistry, 75(4):757–760

Wang F., Garza LA., Cho S., Kafi R., Hammerberg C., Quan T., Hamilton T., Mayes M., Ratanatharathorn V., Voorhees JJ., Fisher GJ., Kang S., 2008. Effect of increased pigmentation on the antifibrotic response of human skin to UV-A1 phototherapy. Archives of Dermatology, 144(7):851–858.

Wang HM., Chen CY., Wen ZH., 2011. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Experimental Dermatology, 20(3):242–248.

Wang HD., Chen CC., Huynh P., Chang JS., 2015. Exploring the potential of using algae in cosmetics. Bioresource Technology. 184:355-362.

Weyermann J., Lochmann D., Zimmer A., 2005. A practical note on the use of cytotoxicity assays. International Journal of Pharmaceutics, 288(2):369–376.

Wirasti, 2016. Uji Aktivitas Antioksidan dan Anti Penuaan Dini Rumput Laut Coklat (Turbinaria decurrens Bory). Thesis Fakultas Farmasi, Universitas Gadjah Mada.

Wondrak GT., Jacobson MK., Jacobson EL., 2006. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochemical & Photobiological Sciences, 5(2):215–237.

Zailanie K., Sukoso., 2014. Study on of Fucoxanthin Content and its Identification in Brown Algae from Padike Village Talango District, Madura Islands. Journal of Life Science and Biomedicine, 4(1):1–3.

Zhang Y., Fang H., Xie Q., Sun J., Liu R., Hong Z., Yi R., Wu H., 2014. Comparative Evaluation of the Radical-Scavenging Activities of Fucoxanthin and Its Stereoisomers. Molecules, 19(2):2100–2113.




DOI: http://dx.doi.org/10.14499/indonesianjpharm29iss4pp188

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Indonesian Journal of Pharmacy

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

                                    
 
web
analytics View My Stats