Computer-aided Design of Chalcone Derivatives as Lead Compounds Targeting Acetylcholinesterase

Florentinus D. Octa Riswanto, Maywan Hariono, Sri Hartati Yuliani, Enade Perdana Istyastono

Abstract


One of well-established biological activities for chalcone derivatives is as acetylcholinesterase inhibitors, which can be developed for the therapy of Alzheimer’s disease. Assisted byretrospectively validated structure-based virtual screening (SBVS) protocol to identify potent acetylcholinesterase inhibitors, 80chalcone derivatives were designed and virtually screened. The F-measure value as the parameter of the predictive ability of the SBVS protocol developed in the research presented in this article was 0.413, which was considerably better than the original SBVS protocol (F-measure = 0.226). Among the screened chalcone derivatives two were selected as potential lead compounds to designpotent inhibitors for acetylcholinesterase: 3-[4-(benzyloxy)-3-methoxyphenyl]-1-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one(3k) and 3-[4-(benzyloxy)-3-methoxyphenyl]-1-(4-hydroxyphenyl)prop-2-en-1-one (4k).


Keywords


Computer-aided drug design, virtual screening, chalcone derivatives, acetylcholinesterase, Alzheimer’s disease.

Full Text:

PDF

References


Abdelwahab, SI., 2013,In vitro inhibitory effect of Boeserngin A on human acetylcholinerase: Understanding its potential using in silico ADMET studies. Journal of Applied Pharmaceutical Science, 3, 30-35.

Adewusi, EA., Moodley, N., Steenkamp, V., 2010, Medicinal plants with cholinesterase inhibitory activity : A Review. Afr. J. Biotechnol., 9, 8257-8276.

Aggarwal, NT., Shah, RC., Bennett, DA., 2015, Alzheimer’s disease: Unique markers for diagnosis and new treatment modalities. Indian J. Med. Res., 142, 369-382.

Andersson, CD., Forsgren, N., Akfur, C., Allgardsson, A., Berg, L., Engdahl, C., Qian, W., Ekstrom, F., Linusson, A., 2013, Divergent structure-activity relationships of structurally similar acetylcholinesterase inhibitors. J. Med. Chem., 56, 7615-7624.

Bissantz, C., Kuhn, B., Stahl, M., 2010, A medicinal chemist’s guide to molecular interactions. J. Med. Chem., 53, 5061-5084.

Cannon, EO., Amini, A., Bender, A., Sternberg, MJE., Muggleton, SH., Glen, RC., Mitchell, JBO., 2007, Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J. Comput. Aided Mol. Des., 21, 269-280.

Cappel, D., Dixon, SL., Sherman, W., Duan, J., 2015, Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J. Comput. Aided Mol. Des., 29, 165-182.

ChemAxon, 2014. MarvinSketch 14.11.10.0. https://www.chemaxon.com/products/marvin/marvinsketch.

Chen, Y., 2015, Beware of docking! Trends Pharmacol. Sci., 36, 78-95.

Colovic, MB., Krstic, DZ., Lazarevic-Pasti, TD., Bondzic, AM., Vasic, VM., 2013, Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 11, 315-335.

de Graaf, C., Kooistra, AJ., Vischer, HF., Katritch, V., Kuijer, M., Shiroishi, M., Iwata, S., Shimamura, T., Stevens, RC., de Esch, IJP., Leurs, R., 2011. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor. J. Med. Chem., 54, 8195-8206.

Desaphy, J., Raimbaud, E., Ducrot, P., Rognan, D., 2013, Encoding protein-ligand interaction patterns in fingerprints and graphs. J. Chem. Inf. Model., 53, 623-637.

Dvir, H., Wong, DM., Harel, M., Barril, X., Orozco, M., Luque, FJ., Munoz-Torrero, D., Camps, P., Rosenberry, TL., Silman, I., Sussman, JL., 2002, 3D Structure of Torpedo californica acetylcholinesterase complexed with Huprine X at 2.1 Å resolution: Kinetic and molecular dynamic correlates. Biochemistry, 41, 2970-2981.

Ece, A., Pejin, B., Ece, A., Pejin, B., 2015, A computational insight into acetylcholinesterase inhibitory activity of a new lichen depsidone. J. Enzym. Inhib. Med. Chem., 30, 528-532.

Furtmann, N., Hu, Y., Gütschow, M., Bajorath, J., 2015, Identification and analysis of the currently available high-confidence three-dimensional activity cliffs. RSC Adv., 5, 43660-43668.

Gabel, J., Desaphy, J., Rognan, D., 2014, Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inf. Model., 54, 2807-2815.

Imran, S., Taha, M., Ismail, N.H., Kashif, S.M., Rahim, F., Jamil, W., Hariono, M., Yusuf, M., Wahab, H., 2015, Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem., 105, 156-170.

Istyastono, EP., 2015, Employing recursive partition and regression tree method to increase the quality of structure-based virtual screening in the estrogen receptor alpha ligands identification. Asian J. Pharm. Clin. Res., 8, 21-24.

Istyastono, EP., 2016, Optimizing structure-based virtual screening protocol to identify phytochemicals as cyclooxygenase-2 inhibitors. Indones. J. Pharm., 27, 163-173.

Istyastono, EP., de Graaf, C., de Esch, IJP., Leurs, R., 2011a, Molecular determinants of selective agonist and antagonist binding to the histamine H4 receptor. Curr. Top. Med. Chem., 11, 661-679.

Istyastono, EP., Kooistra, AJ., Vischer, H., Kuijer, M., Roumen, L., Nijmeijer, S., Smits, R., de Esch, I., Leurs, R., de Graaf, C., 2015a, Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H4 receptor. Med. Chem. Commun., 6, 1003-1017.

Istyastono, EP., Nijmeijer, S., Lim, HD., van de Stolpe, A., Roumen, L., Kooistra, AJ., Vischer, HF., de Esch, IJP., Leurs, R., de Graaf, C., 2011b. Molecular determinants of ligand binding modes in the histamine H4receptor: Linking ligand-based three-dimensional quantitative structure−activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies. J. Med. Chem., 54, 8136-8147.

Istyastono, EP., Yuniarti, N., Hariono, M., Yuliani, SH., Riswanto, FDO., 2017, Binary quantitative structure-activity relationship analysis in retrospective structure-based virtual screening campaigns targeting estrogen receptor alpha, (Manuscript in preparation).

Istyastono, EP., Riswanto, FDO., Yuliani, SH., 2015b, Computer-aided drug repurposing: A cyclooxygenase-2 inhibitor celecoxib as a ligand for estrogen receptor alpha. Indones. J. Chem., 15, 274-280.

Istyastono, EP. and Setyaningsih, D., 2015, Construction and retrospective validation of structure-based virtual screening protocols to identify potent ligands for human adrenergic β2 receptor. Indones. J. Pharm., 26, 20-28.

Istyastono, EP. and Yuniarti, N., 2016, Construction of three dimensional structures of phytoestrogens converted from smiles string representations for simulations using PLANTS docking software. Trad. Med. J., 21, 69-76.

Jayapal, MR.and Sreedhar, NY., 2010, Synthesis and characterization of 4-hydroxy chalcones by aldol condensation using SOCl2/EtOH,Int. J. Curr. Pharm. Res., 2, 2-4.

Jongejan, A., Lim, HD., Smits, RA., de Esch, IJP., Haaksma, E., Leurs, R., 2008, Delineation of agonist binding to the human histamine H4 receptor using mutational analysis, homology modeling, and ab initio calculations. J. Chem. Inf. Model., 48, 1455-1463.

Korb, O., Stützle, T., Exner, TE., 2007, An ant colony optimization approach to flexible protein–ligand docking. Proc. IEEE Swarm Intell. Symp., 1, 115-134.

Korb, O., Stützle, T., Exner, TE., 2009, Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 49, 84-96.

Koshland, DE., 1994, The key–lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl., 33, 2375-2378.

Lill, MA. and Danielson, ML., 2011, Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 25, 13-19.

Lim, HD., Istyastono, EP., van de Stolpe, A., Romeo, G., Gobbi, S., Schepers, M., Lahaye, R., Menge, WMBP., Zuiderveld, OP., Jongejan, A., Smits, RA., Bakker, RA., Haaksma, EEJ., Leurs, R., de Esch, IJP., 2009, Clobenpropit analogs as dual activity ligands for the histamine H3 and H4 receptors: synthesis, pharmacological evaluation, and cross-target QSAR studies. Bioorg. Med. Chem., 17, 3987-3994.

Marcou, G. and Rognan, D., 2007, Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model., 47, 195-207.

Mehta, M., Adem, A., Sabbagh, M., 2012, New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 1-8.

Mysinger, MM., Carchia, M., Irwin, JJ., Shoichet, BK., 2012, Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 55, 6582-6594.

O’Boyle, NM., Banck, M., James, CA., Morley, C., Vandermeersch, T., Hutchison, GR., 2011, Open Babel: An open chemical toolbox. J. Cheminform., 3, 33-47.

Picciotto, MR., Higley, MJ., Mineur, YS., 2012. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 76, 116-129.

Powers, D., 2011. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Tech., 2, 37-63.

Prince, M., Wimo, A., Guerchet, M., Ali, G., WU, Y., Prina, M., 2015,World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalance, Incidence, Cost and Trends. Alzheimer’s Disease International, London.

R Core Team, 2016. R: A language and environment for statistical computing. Vienna. http://www.r-project.org.

Radifar, M., Yuniarti, N., Istyastono, EP., 2013a. PyPLIF-assisted redocking indomethacin-(R)-alpha-ethyl-ethanolamide into cyclooxygenase-1. Indones. J. Chem., 13, 283-286.

Radifar, M., Yuniarti, N., Istyastono, EP., 2013b. PyPLIF: Python-based protein-ligand interaction fingerprinting. Bioinformation, 9, 325-328.

Rizzi, L., Rosset, I., Roriz-Cruz, M., 2014. Global epidemiology of dementia: Alzheimer’s and vascular types. Biomed Res. Int., 2014, 1-8.

Setiawati, A., Riswanto, FDO., Yuliani, SH., Istyastono, EP., 2014, Retrospective validation of a structure-based virtual screening protocol to identify ligands for estrogen receptor alpha and its application to identify the alpha-mangostin binding pose. Indo. J. Chem., 14, 103-108.

Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., Singh, D., 2013, Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem., 70, 165-188.

Sirci, F., Istyastono, EP., Vischer, HF., Kooistra, AJ., Nijmeijer, S., Kuijer, M., Wijtmans, M., Mannhold, R., Leurs, R., de Esch, IJP., de Graaf, C., 2012, Virtual fragment screening: Discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints. J. Chem. Inf. Model., 52, 3308-3324.

Smits, RA., Adami, M., Istyastono, EP., Zuiderveld, OP., van Dam, CME., de Kanter, FJJ., Jongejan, A., Coruzzi, G., Leurs, R., de Esch, IJP., 2010, Synthesis and QSAR of quinazoline sulfonamides as highly potent human histamine H4 receptor inverse agonists. J. Med. Chem., 53, 2390-2400.

Stoddard, BL., Koshland, DE., 1992. Prediction of the structure of a receptor–protein complex using a binary docking method. Nature, 358, 774-776.

Sukumaran, S., Chee, C., Viswanathan, G., Buckle, M., Othman, R., Rahman, NA., Chung, L., 2016, Synthesis, biological evaluation and molecular modelling of 2′-hydroxychalcones as acetylcholinesterase inhibitors. Molecules, 21, 1-10.

Tabet, N., 2006, Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing, 35, 336-338.

Tarcsay, A., Paragi, G., Vass, M., Jójárt, B., Bogár, F., Keserű, GM., 2013, The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J. Chem. Inf. Model. 53, 2990-2999.

ten Brink, T., Exner, TE., 2009, Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J. Chem. Inf. Model., 49, 1535-1546.

Therneau T., Atkinson B., Ripley B., 2015, rpart: Recursive partitioning and regression trees. R package version 4.1-9.https://CRAN.R-project.org/package=rpart

Tran, T., Nguyen, T., Nguyen, N., Nguyen, D., Nguyen, T., Le, M., Thai, K., 2016, Synthesis of novel chalcones as acetylcholinesterase inhibitors. Appl. Sci., 6, 1-11.

Tsuda, K., 2012. Renin-angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int. J. Hypertens., 2012, 1-8.

Wang, A., Stout, CD., Zhang, Q., Johnson, EF., 2015. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J. Biol. Chem., 290, 5092-5104.

Zambre, AP., Ganure, AL., Shinde, DB., Kulkarni, VM., 2007, Perspective assessment of COX-1 and COX-2 selectivity of nonsteroidal anti-inflammatory drugs from clinical practice: Use of genetic function approximation. J. Chem. Inf. Model., 47, 635–643.




DOI: http://dx.doi.org/10.14499/indonesianjpharm28iss2pp100

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 INDONESIAN JOURNAL OF PHARMACY

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

                                               

web
analytics View My Stats