OPTIMIZING STRUCTURE-BASED VIRTUAL SCREENING PROTOCOL TO IDENTIFY PHYTOCHEMICALS AS CYCLOOXYGENASE-2 INHIBITORS

Enade Perdana Istyastono

Abstract


By employing Databases of Useful Decoys (DUD) and its enhanced version (DUD-E), several attempts to construct validated Structure-based Virtual Screening (SBVS) protocols to identify cyclooxygenase-2 (COX-2) inhibitors have been performed. Both databases tagged active COX-2 inhibitors for compounds with IC50 values < 1mM. In the search for phytochemicals as natural COX-2 inhibitors, however, most of their IC50 values are in the micromolar range, which will likely be identified as non-inhibitors for COX-2 by the available SBVS protocols. In this article, validation of an SBVS protocol by adding marginal active COX-2 inhibitors from DUD-E as active compounds is presented. Binary quantitative-structure activity relationship analysis by using recursive partition and regression tree method was performed subsequently to optimize the predictive ability of the protocol. The enrichment factor and the F-measure values of the optimized protocol could reach 44.78 and 0.47, respectively. The optimized protocol could identify 1 out of 9 phytochemicals as COX-2 inhibitors.


Keywords


Structure-based virtual screening (SBVS); phytochemical; cyclooxygenase-2 (COX-2)

Full Text:

PDF (163-173)

References


Anita Y., Radifar M., Kardono L., Hanafi M., Istyastono EP., 2012, Structure-based design of eugenol analogs as potential estrogen receptor antagonists. Bioinformation, 8, 901–906

Bento AP., Gaulton A., Hersey A., Bellis LJ., Chambers J., Davies M., Krüger FA., Light Y., Mak L., McGlinchey S., Nowotka M., Papadatos G., Santos R., Overington JP., 2014, The ChEMBL bioactivity database: An update. Nucl. Acids Res., 42, 1083–1090

Cannon EO., Amini A., Bender A., Sternberg MJE., Muggleton SH., Glen RC., Mitchell, J.B.O., 2007, Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J. Comput. Aided Mol. Des., 21, 269–280

Cappel D., Dixon SL., Sherman W., Duan J., 2015, Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J. Comput. Aided Mol. Des., 29, 165–182

Chakraborti AK., Garg SK., Kumar R., Motiwala HF., Jadhavar PS., 2010, Progress in COX-2 inhibitors: a journey so far. Curr. Med. Chem., 17, 1563–1593

Cianchi F., Cortesini C., Schiavone N., Perna F., Magnelli L., Fanti E., Bani D., Messerini L., Fabbroni V., Perigli G., Capaccioli S., Masini E., 2005, The role of cyclooxygenase-2 in mediating the effects of histamine on cell proliferation and vascular endothelial growth factor production in colorectal cancer. Clin. Cancer Res., 11, 6807–6815

Dai Z., Ma X., Kang H., Gao J., Min W., Guan H., Diao Y., Lu W., Wang, X., 2012, Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in vitro and in vivo. Cancer Cell Int., 12, 53

de Graaf C., Kooistra AJ., Vischer HF., Katritch V., Kuijer M., Shiroishi M., Iwata S., Shimamura T., Stevens RC., de Esch IJP., Leurs R., 2011, Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor. J. Med. Chem., 54, 8195–8206

de Graaf C. and Rognan D., 2008, Selective structure-based virtual screening for full and partial agonists of the β2 adrenergic receptor. J. Med. Chem., 51, 4978–4985

Desaphy J., Raimbaud E., Ducrot P., Rognan D., 2013, Encoding protein-ligand interaction patterns in fingerprints and graphs. J. Chem. Inf. Model., 53, 623–637

Gautam R., Jachak SM., Kumar V., Mohan CG., 2011, Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 21, 1612–1616

Huang N., Shoichet BK., Irwin JJ., 2006, Benchmarking sets for molecular docking. J. Med. Chem., 49, 6789–6801

Istyastono EP., 2015, Employing recursive partition and regression tree method to increase the quality of structure-based virtual screening in the estrogen receptor alpha ligands identification. Asian J. Pharm. Clin. Res., 8, 21–24

Istyastono EP., Riswanto FDO., Yuliani SH., 2015a, Computer-aided drug repurposing: a cyclooxygenase-2 inhibitor celecoxib as a ligand for estrogen receptor alpha. Indones. J. Chem., 15, 274–280

Istyastono EP., Kooistra AJ., Vischer H., Kuijer M., Roumen L., Nijmeijer S., Smits R., de Esch I., Leurs R., de Graaf C., 2015b, Structure-based virtual screening for fragment-like ligands of the g protein-coupled histamine H4 receptor. Med. Chem. Commun., 6, 1003–1017

Istyastono EP. and Setyaningsih D., 2015, Construction and retrospective validation of structure-based virtual screening protocols to identify potent ligands for human adrenergic β2 receptor, Indones. J. Pharm., 26, 20–28

Jendrossek V., 2013, Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett., 332, 313–324

Kaserer T., Temml V., Kuti, Z., Vanek T., Landa P., Schuster D., 2015, Prospective performance evaluation of selected common virtual screening tools. Case study: Cyclooxygenase (COX) 1 and 2. Eur. J. Med. Chem. 96, 445–457

Korb O., Stützle T., Exner TE., 2007, An ant colony optimization approach to flexible protein–ligand docking. Proc. IEEE Swarm Intell. Symp. 1, 115–134

Korb O., Stützle T., Exner TE., 2009, Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 49, 84–96

Krüger DM. and Evers A., 2010, Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem, 5, 148–158

Kurumbail R., Stevens A., Gierse J., 1996, Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 384, 644–648

Larsson J., Gottfries J., Bohlin L., Backlund A., 2005, Expanding the ChemGPS chemical space with natural products. J. Nat. Prod., 68, 985–991

Lill MA. and Danielson ML., 2011, Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 25, 13–19

Lim HD, Istyastono EP, van de Stolpe A, Romeo G, Gobbi S, Schepers M, Lahaye R, Menge WMBP, Zuiderveld OP, Jongejan A, Smits RA, Bakker RA, Haaksma EEJ, Leurs R, de Esch IJP, 2009, Clobenpropit analogs as dual activity ligands for the histamine H3 and H4 receptors: synthesis, pharmacological evaluation, and cross-target QSAR studies. Bioorg. Med. Chem., 17, 3987–3994.

Lipinski CA., Lombardo F., Dominy BW., Feeney PJ., 2001, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46, 3–26

Maggon K., 2005, Best-selling human medicines 2002-2004. Drug Discov. Today, 10, 739–742

Mumpuni E., Nurrochmad A., Jenie UA., Pranowo HD., 2015, Virtual screening and bonding mode elucidation of curcumin analogue in cyclooxygenase-2 enzyme using EE_COX2_V.1.0 protocol. Indones. J. Phar. Sci., 13, 235-241

Mysinger MM., Carchia M., Irwin JJ., Shoichet BK., 2012, Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem., 55, 6582–6594

O’Boyle NM., Banck M., James CA., Morley C., Vandermeersch T., Hutchison GR., 2011, Open Babel: An open chemical toolbox. J. Cheminform., 3, 33–47

Orlikova B., Legrand N., Panning J., Dicato M., Diederich M., 2013, Anti-inflammatory and anticancer drugs from nature. Cancer Treat. Res., 159, 123–143

Pany S., Pal A., Sahu PK., 2013, In silico analysis of cyclooxygenase inhibitory activity of some natural molecules. Int. J. Pharm. Pharm. Sci., 5, 7–9

Penning TD., Talley JJ., Bertenshaw SR., Carter JS., Collins PW., Docter S., Graneto MJ., Lee LF., Malecha JW., Miyashiro JM., Rogers RS., Rogier DJ., Yu SS., Anderson GD., Burton EG., Cogburn JN., Gregory SA., Koboldt CM., Perkins WE., Seibert K., Veenhuizen AW., Zhang YY., Isakson PC., 1997, Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 40, 1347–1365

Powers D., 2011. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Tech., 2, 37– 63

R Core Team, 2015. R: A language and environment for statistical computing. Vienna. http://www.r-project.org.

Radifar M., Yuniarti N., Istyastono EP., 2013a, PyPLIF-assisted redocking indomethacin-(R)-alpha-ethyl-ethanolamide into cyclooxygenase-1. Indones. J. Chem., 13, 283–286.

Radifar M., Yuniarti N., Istyastono EP., 2013b, PyPLIF: Python-based protein-ligand interaction fingerprinting. Bioinformation, 9, 325–328

Rao PNP., Chen Q., Knaus EE., 2006, Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: dual inhibitors of cyclooxygenases and lipoxygenases. J. Med. Chem., 49, 1668–1683

Rowlinson SW., Kiefer JR., Prusakiewicz JJ., Pawlitz JL., Kozak KR., Kalgutkar AS., Stallings WC., Kurumbail RG., Marnett LJ., 2003, A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J. Biol. Chem., 278, 45763–45679

Sadée W. and Bohn L., 2006, How specific are “target-specific” drugs? Celecoxib as a case in point. Mol. Interv., 6, 196–198

Setiawati A., Riswanto FDO., Yuliani SH., Istyastono EP., 2014, Retrospective validation of a structure-based virtual screening protocol to identify ligands for estrogen receptor alpha and its application to identify the alpha-mangostin binding pose. Indo. J. Chem., 14, 103–108.

Setyaningsih D., Radifar M., Murti YB., Istyastono EP., 2013, Construction of in silico structure-based screening tools to study the oxidative metabolites formation of curcumin by human cytochrome 450 3A4. Indones. J. Pharm., 24, 75–85

ten Brink T. and Exner TE., 2009, Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J. Chem. Inf. Model., 49, 1535–1546

Therneau T., Atkinson B., Ripley B., 2015, rpart: Recursive partitioning and regression trees. R package version 4.1-9. https://CRAN.R-project.org/package=rpart

Wang JL., Carter J., Kiefer JR., Kurumbail RG., Pawlitz JL., Brown D., Hartmann SJ., Graneto MJ., Seibert K., Talley JJ., 2010a, The novel benzopyran class of selective cyclooxygenase-2 inhibitors-part I: The first clinical candidate. Bioorg. Med. Chem. Lett., 20, 7155–7158

Wang JL., Limburg D., Graneto MJ., Springer J., Hamper JRB., Liao S., Pawlitz JL., Kurumbail RG., Maziasz T., Talley JJ., Kiefer JR., Carter J., 2010b, The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett. 20, 7159–7163

Wilgus TA., Bergdall VK., Tober KL., Hill KJ., Mitra S., Flavahan NA., Oberyszyn TM., 2004, The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am. J. Pathol., 165, 753–761

Wilgus TA., Vodovotz Y., Vittadini E., Clubbs EA., Oberyszyn TM., 2003, Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Rep. Reg., 11, 25–34

Willoughby DA., Moore AR., Colville-Nash PR., Gilroy D., 2000, Resolution of inflammation. Int. J. Immunopharmacol., 22, 1131–1135

Yuniarti N., Ikawati Z., Istyastono EP., 2011, The importance of ARG513 as a hydrogen bond anchor to discover COX-2 inhibitors in a virtual screening campaign. Bioinformation, 6, 164–166

Yuniarti N., Nugroho PA., Asyhar A., Sardjiman, Ikawati Z., Istyastono EP., 2012, In vitro and In Silico studies on curcumin and its analogues as dual inhibitors for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). ITB J. Sci., 44A, 51–66




DOI: http://dx.doi.org/10.14499/indonesianjpharm27iss3pp163

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 INDONESIAN JOURNAL OF PHARMACY

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

web
analytics View My Stats