PHARMACEUTICAL PROPERTIES OF VENOM TOXINS AND THEIR POTENTIAL IN DRUG DISCOVERY

Jeroen Kool

Abstract


Traditional pipelines feeding drugs coming to the market are declining. This is one of the reasons why nowadays the previously abandoned natural extract drug discovery programs are slowly coming back. In this scenario, small molecular metabolites from plants and single cell marine or soil organisms are gaining interest in pharmaceutical research again. Animal venoms are another source for finding new biopharmaceutical lead molecules and research interest in discovering bioactive molecules from venoms is rising. Venoms comprise often highly selective and potent bioactive peptides and small proteins for receptors and enzymes that are valid drug targets. This work discusses drug discovery research on bioactive compounds in venoms and gives older and more recent examples of bioactive compounds found in venoms from different animals. Common pharmaceutical targets that different classes of venom toxins interact with and information on developmental stages of several medicinal venom peptides are also discussed.

 

Key words:venom, toxin, drug discovery, peptide, pharmaceutical activity  

Full Text:

PDF (1-8)

References


Arlinghaus, F. T. and J. A. Eble (2012). "C-type lectin-like proteins from snake venoms." Toxicon 60(4): 512-519.

Barber, C. M., G. K. Isbister and W. C. Hodgson (2013). "Alpha neurotoxins." Toxicon 66: 47-58.

Beeton, C., M. W. Pennington and R. S. Norton (2011). "Analogs of the sea anemone potassium channel blocker ShK for the treatment of autoimmune diseases." Inflamm Allergy Drug Targets 10(5): 313-321.

Bledzka, K., S. S. Smyth and E. F. Plow (2013). "Integrin alphaIIbbeta3: from discovery to efficacious therapeutic target." Circ Res 112(8): 1189-1200.

Brady, R. M., J. B. Baell and R. S. Norton (2013). "Strategies for the development of conotoxins as new therapeutic leads." Mar Drugs 11(7): 2293-2313.

Braunersreuther, V., F. Montecucco, G. Pelli, K. Galan, A. E. Proudfoot, A. Belin, N. Vuilleumier, F. Burger, S. Lenglet, I. Caffa, D. Soncini, A. Nencioni, J. P. Vallee and F. Mach (2013). "Treatment with the CC chemokine-binding protein Evasin-4 improves post-infarction myocardial injury and survival in mice." Thromb Haemost 110(4): 807-825.

Calvo, E., F. Tokumasu, O. Marinotti, J. L. Villeval, J. M. Ribeiro and I. M. Francischetti (2007). "Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor." J Biol Chem 282(37): 26928-26938.

Chanda, C., A. Sarkar, S. Sistla and D. Chakrabarty (2013). "Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom." Biochem Biophys Res Commun 441(3): 550-554.

Chi, V., M. W. Pennington, R. S. Norton, E. J. Tarcha, L. M. Londono, B. Sims-Fahey, S. K. Upadhyay, J. T. Lakey, S. Iadonato, H. Wulff, C. Beeton and K. G. Chandy (2012). "Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases." Toxicon 59(4): 529-546.

Deruaz, M., P. Bonvin, I. C. Severin, Z. Johnson, S. Krohn, C. A. Power and A. E. Proudfoot (2013). "Evasin-4, a tick-derived chemokine-binding protein with broad selectivity can be modified for use in preclinical disease models." FEBS J 280(19): 4876-4887.

Deruaz, M., A. Frauenschuh, A. L. Alessandri, J. M. Dias, F. M. Coelho, R. C. Russo, B. R. Ferreira, G. J. Graham, J. P. Shaw, T. N. Wells, M. M. Teixeira, C. A. Power and A. E. Proudfoot (2008). "Ticks produce highly selective chemokine binding proteins with antiinflammatory activity." J Exp Med 205(9): 2019-2031.

Diochot, S., A. Baron, M. Salinas, D. Douguet, S. Scarzello, A. S. Dabert-Gay, D. Debayle, V. Friend, A. Alloui, M. Lazdunski and E. Lingueglia (2012). "Black mamba venom peptides target acid-sensing ion channels to abolish pain." Nature 490(7421): 552-555.

Dutertre, S. and R. J. Lewis (2010). "Use of venom peptides to probe ion channel structure and function." J Biol Chem 285(18): 13315-13320.

Earl, S. T., P. P. Masci, J. de Jersey, M. F. Lavin and J. Dixon (2012). "Drug development from Australian elapid snake venoms and the Venomics pipeline of candidates for haemostasis: Textilinin-1 (Q8008), Haempatch (Q8009) and CoVase (V0801)." Toxicon 59(4): 456-463.

Ergin, E., F. Uckan, D. B. Rivers and O. Sak (2006). "In vivo and in vitro activity of venom from the endoparasitic wasp Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae)." Arch Insect Biochem Physiol 61(2): 87-97.

Essack, M., V. B. Bajic and J. A. Archer (2012). "Conotoxins that confer therapeutic possibilities." Mar Drugs 10(6): 1244-1265.

Hajnicka, V., P. Kocakova, M. Slavikova, M. Slovak, J. Gasperik, N. Fuchsberger and P. A. Nuttall (2001). "Anti-interleukin-8 activity of tick salivary gland extracts." Parasite Immunol 23(9): 483-489.

Hajnicka, V., I. Vancova-Stibraniova, M. Slovak, P. Kocakova and P. A. Nuttall (2011). "Ixodid tick salivary gland products target host wound healing growth factors." Int J Parasitol 41(2): 213-223.

Han, S., K. Lee, J. Yeo, H. Kweon, S. Woo, M. Lee, H. Baek, S. Kim and K. Park (2007). "Effect of honey bee venom on microglial cells nitric oxide and tumor necrosis factor-alpha production stimulated by LPS." J Ethnopharmacol 111(1): 176-181.

Harvey, A. L. (2014). "Toxins and drug discovery." Toxicon 92: 193-200.

Hu, H., D. Chen, Y. Li and X. Zhang (2006). "Effect of polypeptides in bee venom on growth inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in-vitro and Balb/c nude mice in-vivo." J Pharm Pharmacol 58(1): 83-89.

Inagaki, H., M. Akagi, H. T. Imai, R. W. Taylor and T. Kubo (2004). "Molecular cloning and biological characterization of novel antimicrobial peptides, pilosulin 3 and pilosulin 4, from a species of the Australian ant genus Myrmecia." Arch Biochem Biophys 428(2): 170-178.

Jang, M. H., M. C. Shin, S. Lim, S. M. Han, H. J. Park, I. Shin, J. S. Lee, K. A. Kim, E. H. Kim and C. J. Kim (2003). "Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299." J Pharmacol Sci 91(2): 95-104.

Joseph, J. S. and R. M. Kini (2004). "Snake venom prothrombin activators similar to blood coagulation factor Xa." Curr Drug Targets Cardiovasc Haematol Disord 4(4): 397-416.

Kearney, P. M., M. Whelton, K. Reynolds, P. Muntner, P. K. Whelton and J. He (2005). "Global burden of hypertension: analysis of worldwide data." Lancet 365(9455): 217-223.

Khunsap, S., N. Pakmanee, O. Khow, L. Chanhome, V. Sitprija, M. Suntravat, S. E. Lucena, J. C. Perez and E. E. Sanchez (2011). "Purification of a phospholipase A(2) from Daboia russelii siamensis venom with anticancer effects." J Venom Res 2: 42-51.

King, G. F. (2011). "Venoms as a platform for human drugs: translating toxins into therapeutics." Expert Opin Biol Ther 11(11): 1469-1484.

King, T. P. and M. D. Spangfort (2000). "Structure and biology of stinging insect venom allergens." Int Arch Allergy Immunol 123(2): 99-106.

Kini, R. M. and R. Doley (2010). "Structure, function and evolution of three-finger toxins: mini proteins with multiple targets." Toxicon 56(6): 855-867.

Klint, J. K., S. Senff, D. B. Rupasinghe, S. Y. Er, V. Herzig, G. M. Nicholson and G. F. King (2012). "Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads." Toxicon 60(4): 478-491.

Koh, C. Y. and R. M. Kini (2012). "From snake venom toxins to therapeutics--cardiovascular examples." Toxicon 59(4): 497-506.

Koh, D. C., A. Armugam and K. Jeyaseelan (2006). "Snake venom components and their applications in biomedicine." Cell Mol Life Sci 63(24): 3030-3041.

Kularatne, S. A. and N. Senanayake (2014). "Venomous snake bites, scorpions, and spiders." Handb Clin Neurol 120: 987-1001.

Lai, R., H. Takeuchi, J. Jonczy, H. H. Rees and P. C. Turner (2004). "A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum." Gene 342(2): 243-249.

Laing, G. D. and A. M. Moura-da-Silva (2005). "Jararhagin and its multiple effects on hemostasis." Toxicon 45(8): 987-996.

Lewis, R. J., S. Dutertre, I. Vetter and M. J. Christie (2012). "Conus venom peptide pharmacology." Pharmacol Rev 64(2): 259-298.

Lewis, R. J. and M. L. Garcia (2003). "Therapeutic potential of venom peptides." Nat Rev Drug Discov 2(10): 790-802.

Lu, Q., J. M. Clemetson and K. J. Clemetson (2005). "Snake venoms and hemostasis." J Thromb Haemost 3(8): 1791-1799.

Matsui, T., Y. Fujimura and K. Titani (2000). "Snake venom proteases affecting hemostasis and thrombosis." Biochim Biophys Acta 1477(1-2): 146-156.

McCleary, R. J. and R. M. Kini (2013). "Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads." Toxicon 62: 56-74.

Min, J. W., W. H. Liu, X. H. He and B. W. Peng (2013). "Different types of toxins targeting TRPV1 in pain." Toxicon 71: 66-75.

Mizurini, D. M., I. M. Francischetti and R. Q. Monteiro (2013). "Aegyptin inhibits collagen-induced coagulation activation in vitro and thromboembolism in vivo." Biochem Biophys Res Commun 436(2): 235-239.

Moerman, L., S. Bosteels, W. Noppe, J. Willems, E. Clynen, L. Schoofs, K. Thevissen, J. Tytgat, J. Van Eldere, J. Van Der Walt and F. Verdonck (2002). "Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa." European journal of biochemistry / FEBS 269(19): 4799-4810.

Motoyashiki, T., A. T. Tu, D. A. Azimov and K. Ibragim (2003). "Isolation of anticoagulant from the venom of tick, Boophilus calcaratus, from Uzbekistan." Thromb Res 110(4): 235-241.

Orsolic, N. (2012). "Bee venom in cancer therapy." Cancer Metastasis Rev 31(1-2): 173-194.

Pope, J. E. and T. R. Deer (2013). "Ziconotide: a clinical update and pharmacologic review." Expert Opin Pharmacother 14(7): 957-966.

Pu, X. C., P. T. Wong and P. Gopalakrishnakone (1995). "A novel analgesic toxin (hannalgesin) from the venom of king cobra (Ophiophagus hannah)." Toxicon 33(11): 1425-1431.

Reid, P. F. (2007). "Alpha-cobratoxin as a possible therapy for multiple sclerosis: a review of the literature leading to its development for this application." Crit Rev Immunol 27(4): 291-302.

Remijsen, Q., F. Verdonck and J. Willems (2010). "Parabutoporin, a cationic amphipathic peptide from scorpion venom: much more than an antibiotic." Toxicon : official journal of the International Society on Toxinology 55(2-3): 180-185.

Russo, R. C., A. L. Alessandri, C. C. Garcia, B. F. Cordeiro, V. Pinho, G. D. Cassali, A. E. Proudfoot and M. M. Teixeira (2011). "Therapeutic effects of evasin-1, a chemokine binding protein, in bleomycin-induced pulmonary fibrosis." Am J Respir Cell Mol Biol 45(1): 72-80.

Santos-Martinez, M. J., C. Medina, P. Jurasz and M. W. Radomski (2008). "Role of metalloproteinases in platelet function." Thromb Res 121(4): 535-542.

Schwalie, P. C. and J. Schultz (2009). "Positive selection in tick saliva proteins of the Salp15 family." J Mol Evol 68(2): 186-191.

Segers, K., J. Rosing and G. A. Nicolaes (2006). "Structural models of the snake venom factor V activators from Daboia russelli and Daboia lebetina." Proteins 64(4): 968-984.

Somanadhan, B., G. Varughese, P. Palpu, R. Sreedharan, L. Gudiksen, U. W. Smitt and U. Nyman (1999). "An ethnopharmacological survey for potential angiotensin converting enzyme inhibitors from Indian medicinal plants." J Ethnopharmacol 65(2): 103-112.

Stibraniova, I., M. Lahova and P. Bartikova (2013). "Immunomodulators in tick saliva and their benefits." Acta Virol 57(2): 200-216.

Sun, D., A. McNicol, A. A. James and Z. Peng (2006). "Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor." Platelets 17(3): 178-184.

Tans, G. and J. Rosing (2001). "Snake venom activators of factor X: an overview." Haemostasis 31(3-6): 225-233.

Tsetlin, V. I. (2015). "Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators." Trends Pharmacol Sci 36(2): 109-123.

Twede, V. D., G. Miljanich, B. M. Olivera and G. Bulaj (2009). "Neuroprotective and cardioprotective conopeptides: an emerging class of drug leads." Curr Opin Drug Discov Devel 12(2): 231-239.

Valeriano-Zapana, J. A., F. S. Segovia-Cruz, J. M. Rojas-Hualpa, D. Martins-de-Souza, L. A. Ponce-Soto and S. Marangoni (2012). "Functional and structural characterization of a new serine protease with thrombin-like activity TLBan from Bothrops andianus (Andean Lancehead) snake venom." Toxicon 59(2): 231-240.

Vetter, I. and R. J. Lewis (2012). "Therapeutic potential of cone snail venom peptides (conopeptides)." Curr Top Med Chem 12(14): 1546-1552.

Vink, S., A. H. Jin, K. J. Poth, G. A. Head and P. F. Alewood (2012). "Natriuretic peptide drug leads from snake venom." Toxicon 59(4): 434-445.

Wachinger, M., A. Kleinschmidt, D. Winder, N. von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle and R. Brack-Werner (1998). "Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression." J Gen Virol 79 ( Pt 4): 731-740.

Wikel, S. (2013). "Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment." Front Microbiol 4: 337.

Xie, J. P., J. Yue, Y. L. Xiong, W. Y. Wang, S. Q. Yu and H. H. Wang (2003). "In vitro activities of small peptides from snake venom against clinical isolates of drug-resistant Mycobacterium tuberculosis." Int J Antimicrob.Agents 22(2): 172-174.

Xu, X., J. Li, Q. Lu, H. Yang, Y. Zhang and R. Lai (2006). "Two families of antimicrobial peptides from wasp (Vespa magnifica) venom." Toxicon 47(2): 249-253.

Ye, J., H. Zhao, H. Wang, J. Bian and R. Zheng (2010). "A defensin antimicrobial peptide from the venoms of Nasonia vitripennis." Toxicon 56(1): 101-106.

Zhao, Z., Y. Ma, C. Dai, R. Zhao, S. Li, Y. Wu, Z. Cao and W. Li (2009). "Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates." Antimicrobial agents and chemotherapy 53(8): 3472-3477.




DOI: http://dx.doi.org/10.14499/indonesianjpharm27iss1pp1

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 INDONESIAN JOURNAL OF PHARMACY

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

web
analytics View My Stats