STRUCTURE–ANTIMICROBIAL PROPERTIES STUDY OF SOME DIBASIC PHENYLCARBAMIC ACID ESTERS

Ivan Malík, Jozef Csöllei, Marián Bukovský

Abstract


Due to worldwide phenomenon of microbial resistance to commonly used therapeutic agents, antibiotics and antifungals, dibasic di‑/trimethylphenylcarbamic acid esters 13, a non-traditional series of potential antimicrobials, has been in vitro evaluated against chosen Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial strains as well as against yeast (C. albicans) by the minimum inhibitory concentration (MIC) assay. Taking into consideration chemical structure of tested derivatives, the incorporation of more than one protonated atom of nitrogen into salt forming fragment positively influenced the activity against E. coli. On the contrary, the presence of one or more methyl groups instead of 3-alkoxy side chain attached to lipophilic aromatic moiety has not found to be favorable structural feature. In entire set of inspected compounds, the most promising results have been found for the compound               3, chemically1-[3-piperidinium-1-yl-2-({[(2,4,6-trimethylphenyl)amino]carbonyl}oxy)propyl]

piperidinium dichloride, against E. coli with the MIC=1.56 mg/mL.

 

Key words: Dibasic phenylcarbamic acid esters, Escherichia coli, hydrogen bonding, lipophilicity


Full Text:

PDF (53-58)

References


Andrews JM., 2001. Determination of minimum inhibitory concentration. J. Antimicrob. Chemother. 48 (Suppl. 1): 5-16.

Begec Z., Gulhas N., Toprak HI., Yetkin G., Kuzucu C., Ersoy, MO., 2007. Comparison of the antibacterial activity of lidocaine 1% versus alkalinized lidocaine in vitro. Curr. Ther. Res. 68: 242-248.

Collura V., Letellier L., 1990. Mechanism of penetration and action of local anesthetics in Escherichia coli cells. Biochim. Biophys. Acta 1027: 238-244.

Csöllei J., Malík I., Bukovský M., Sedlárová E., 2014. Dibasic esters of ortho-/meta-alkoxyphenylcarbamic acid containing 1-dipropylamino-3-piperidinopropan-1-yl and their antimicrobial activity. Pol. J. Microbiol. 63: 231-236.

Garlid KD., Nakashima RA., 1983. Studies of the mechanism of uncoupling by amine local anesthetics. J. Biol. Chem. 258: 7974-7980.

Główka ML., Olczak A., 1999. Geometry of lidocaine-like molecules: 2. Crystal structures of 2-benzyl-2-(1-piperidinyl)-N-(2,6-dimethylphenyl) acetamide and its hydrochloride hemihydrate. J. Chem. Crystallogr. 29: 695-700.

Główka ML., Olczak A., Białasiewicz W., Kwapiszewski W., 2005. Geometry of lidocaine-like molecules: 3. Structure of a potent antiarrhythmic agent: 2-Methyl-2-(1-morpholinyl)-N-(2,6-dimethylphenyl) acetamide. Pol. J. Chem. 79: 1079-1085.

Gocmen JS., Buyukkocak U., Caglayan O., Aksoy, A., 2008. In vitro antibacterial effects of topical local anesthetics. J. Dermatol. Treat. 19: 351-353.

Goldberg L., 1949. Studies on local anaesthetics. Pharmacological properties of homologues and isomers of xylocain (alkyl aminoacyl derivatives). Acta Physiol. Scand. 18: 1-18.

Gordh T., 1949. Xylocain – a new local analgesic. Anaesthesia 4: 21.

Gowda BT., Foro S., Fuess H., 2007. N-(2,6-Dimethylphenyl)acetamide. Acta Cryst. E63: 3154.

Hanson AW., Banner DW., 1974. 2-Diethylamino-2´,6´-acetoxylidine (lidocaine). Acta Cryst. B30: 2486-2488.

Hanson AW., Röhrl M., 1972. The crystal structure of lidocaine hydrochloride monohydrate. Acta Cryst. B28: 3567-3571.

Kanj SS., Kanfani ZA., 2011. Current concepts in antimicrobial therapy against resistant Gram-negative organisms: Extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc. 86: 250-259.

Li X-Z., Plésiat P., Nikaido H., 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28: 337-418.

Löfgren N., Lundquist B., 1946. Studies on local anaesthetics. Svensk. Kem. Tidskr. 58: 206-217.

Lu Ch-W., Lin T-Y., Shieh J-S., Wang M-J., Chiu K-M., 2014. Antimicrobial effect of continuous lidocaine infusion in a Staphylococcus aureus-induced wound infection in a mouse model. Ann. Plast. Surg. 73: 598-601.

Moran GJ., Krishnadasan A., Gorwitz RJ., Fosheim GE., McDougal LK., Carey RB., Talan DA., 2006. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355: 666-674.

Ohsuka S., Ohta M., Masuda K., Arakawa Y., Kaneda T., Kato N., 1994. Lidocaine hydrochloride and acetylsalicylate kill bacteria by disrupting the bacterial membrane potential in different ways. Microbiol. Immunol. 38: 429-434.

Remko M., 1989. Ab initio and PCILO investigations of the antiarrhythmic tocainide, its cation and hydrochoride. Chem. Papers 43: 267-278.

Rodvold KA., McConeghy KW., 2014. Methicillin-resistant Staphylococcus aureus therapy: Past, present, and future. Clin. Infect. Dis. 58 (Suppl. 1): S20-S27.

Yoo CS., Abola E., Wood MK., Sax M., Pletcher J., 1975. The crystal structure of lidocaine bis-p-nitrophenylphosphate. Acta Cryst. B31: 1354-1360.




DOI: http://dx.doi.org/10.14499/indonesianjpharm27iss1pp53

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 INDONESIAN JOURNAL OF PHARMACY

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian J Pharm indexed by:

                                    
 
web
analytics View My Stats