Evaluation of Pain Scale Decrease and Adverse Effects of Ketorolac Injections: An Observational Study in Patients with Postoperative Pain

Mawardi Ihsan1, Fivy Kurniawati1, Husna Khoirunnisa2, Belladonna Chairini2

1. Department of Pharmacology and Clinical Pharmacy, Universitas Gadjah Mada, Sekip Utara 55281 Yogyakarta
2. Undergraduate Program of Pharmacy, Universitas Gadjah Mada, Sekip Utara 55281 Yogyakarta

ABSTRACT
The use of ketorolac injections in Indonesia is restricted with the provision of 2-3 ampoules per day with a maximum of two days even though the literature states that ketorolac could be used for no more than five days. This study aimed to determine the decrease in pain scale as well as gastrointestinal and renal adverse effects of ketorolac injections in two days of use. This study was an observational study with a one-group pre-test post-test design conducted prospectively. The group was a group of patients with postoperative pain who received ketorolac injections and were treated during January till April 2018 in an academic hospital in Yogyakarta. The results showed that ketorolac injections did not provide a statistically significant decrease in pain scale in two days of use compared to before surgery (median [range] = 2.0[0.0-9.33] vs 1.33[0.0-8.33]; p=0.32). Ketorolac injections decreased the kidney function of subjects in two days of use compared to before surgery based on creatinine values (0.76mg/dL vs 0.80mg/dL; p=0.024) and GFR (96.13mL/min/m² vs 87.52mL/min/m²; p=0.023), and as many as 31 subjects (43.06%) experienced complaints that were suspected to be the gastrointestinal adverse effects of ketorolac injections with the three most complaints were bloating (18.06%), nausea (16.67%), and heartburn (15.28%). Those three results support the use of ketorolac injections following what has been regulated in the Indonesian National Formulary.

Keywords: Pain scale, gastrointestinal adverse effects, renal adverse effect, ketorolac injections, postoperative.

INTRODUCTION
Postoperative pain is an unexpected subjective complaint. Data on the prevalence of postoperative pain in Indonesia is still not well documented, but in other countries such as studies conducted in Barcelona, it had shown that the prevalence of orthopedic postoperative pain and trauma was around 28% with mild pain of 15% and moderate to severe pain by 13% (Robleda et al., 2014). Another study showed that moderate to severe pain in the first 24h and the first 48h after surgery were 13% and 11.7%, respectively (Mwaka et al., 2013). Ketorolac is one of the drugs of choice for postoperative pain management. A study showed that 89.7% of patients with postoperative pain in one hospital in Indonesia were treated using ketorolac (Permata, 2014).

The results of several other studies showed that ketorolac could provide better postoperative pain management than placebo, tramadol (Shah et al., 2013), diclofenac (Mony et al., 2016), and significantly reduced pain intensity 30 minutes after surgery (Eftekharian and Pak, 2017). However, the risk of gastrointestinal bleeding due to ketorolac was known to be quite high and relatively higher than other NSAIDs. The results of a study showed that nonselective NSAIDs increased the relative risk of bleeding, but ketorolac could increase the risk of bleeding much even higher (Gonzalez et al., 2010). A study that examined the association between NSAIDs and chronic kidney disease (CKD) showed that ketorolac increased the risk of CKD by 2.54 times in less than 3 months (Ingrasciotta et al., 2015) and acute renal failure by 2.08 times if given for more than 5 days (Feldman et al., 1997). In addition, other studies that have been conducted showed that in addition to gastrointestinal bleeding, the...
adverse effects that may arise in 48 hours of ketorolac injections use in postoperative patients were; nausea/vomiting 37.5%; dizziness 25%; dyspepsia 8.7%; pruritus 6.2%; and constipation 3.1% (Siribumrungrongwong et al., 2015).

The use of ketorolac injections is generally restricted for no more than five days (Grosser et al., 2018; Strom et al., 1996), but the use of ketorolac injections in Indonesia is restricted with the provision of 2-3 ampoules per day with a maximum of two days by the Indonesian National Formulary (Kementerian Kesehatan, 2016). This certainly raises the question whether ketorolac influences the decrease in pain scale adequately and whether gastrointestinal and renal adverse effects will indeed appear in just two days. Therefore, this study aimed to determine the decrease in pain scale along with gastrointestinal and renal adverse effects of ketorolac injections in two days of use.

MATERIAL AND METHODS

Study design

This study was an observational study with a one-group pre-test post-test design conducted prospectively. This study only consisted of one group, namely the group of patients who received ketorolac injections. The study was conducted in the surgical ward of an academic hospital in Yogyakarta since January till April 2018. The design of this study was approved by the Research Ethics Committee of the Faculty of Medicine (now the Faculty of Medicine, Public Health, and Nursing) of the Universitas Gadjah Mada with number KE/FK/1033/EC/2017.

Population and samples of study

The population of this study was all surgical patients hospitalized in the surgical ward of the study hospital, while the study samples were all patients aged ≥18 years with postoperative pain who received ketorolac injections during hospitalization in the surgical ward and were not included in the exclusion criteria specified in the study. The exclusion criteria of this study consisted: 1) Patients who were unconscious after completing surgery; 2) Patients with a history of peptic ulcer, chronic kidney disease, or were experiencing nausea, vomiting, diarrhea, and constipation before undergoing surgery.

Data collection

The collection of study subjects involved physicians who treated the patients and it was performed using consecutive sampling method. The physicians asked the patients to participate in the study by signing an informed consent sheet before undergoing surgery. After the patients agreed to participate as study subjects, the patients’ pain scale was assessed using a numeric rating scale (NRS) instrument (Hawker et al., 2011) and determined as the baseline pain scale. The patients’ pain scale was reassessed on the first and second day after surgery. Complaints or symptoms that were thought to be ketorolac adverse effects were monitored during treatment. Suspected adverse effects were adverse effects that lead to gastrointestinal and renal. Identification of gastrointestinal adverse effects of ketorolac injections use was performed using the Naranjo adverse drug reaction probability questionnaire (Belhekar et al., 2014), whereas the identification of renal adverse effects was carried out by examining the patients’ serum creatinine and Blood Urea Nitrogen (BUN) values.

Data analysis

Numerical data were processed in decimal form with the central tendency of data in the form of mean ± SEM (Standard Error of Mean) if the data is normally distributed statistically, or in the form of median if the data were not normally distributed. Patient data that were categorized were processed in the form of proportions. Both types of data were then presented in the form of tables or figures.

The analysis of decrease in pain scale was done by comparing the pain scale before surgery with the pain scale on the day one and day two after surgery, whereas the analysis of decrease in kidney function was done in two ways, namely by comparing creatinine values before undergoing surgery with creatinine values on day two after surgery, and by comparing values of GFR before undergoing surgery with GFR on day two after surgery. Measurement of the value of GFR was done using the MDRD4 formula (Levey et al., 2000). Before analyzing the decrease in the pain scale and kidney function, the investigators conducted a data distribution normality test using the Shapiro-Wilk test. Then, the significance of the decrease in pain scale and kidney function (creatinine and GFR) was tested using paired t-test if the data were normally distributed or the Wilcoxon test if the data were not normally distributed statistically. The p-value of <0.05 showed that the pain scale or kidney function before undergoing surgery were significantly different from day one or two after surgery.

An Observational Study in Patients with Postoperative Pain

134

Volume 30 Issue 2 (2019)
RESULTS AND DISCUSSION

This study aimed to: 1) to determine the adequacy of the decrease in the patients’ pain scale given by injections of ketorolac on day one and day two after surgery, 2) to determine the effect of ketorolac injections on kidney function on day two after surgery, and 3) to investigate complaints suspected of being an adverse effect of ketorolac injections. This study was beneficial as a basis for evaluating the restrictions on the use of ketorolac injections according to the Indonesian National Formulary, which states that ketorolac injections are only given in a maximum of two days with a dose of 2-3 ampoules per day (Kementerian Kesehatan, 2016) even though Vadivelu et al. (2017) states that ketorolac use may be used for not more than five days (Grosser et al., 2018; Vadivelu et al., 2017).

Characteristics of study subjects

The subjects of this study were surgical patients who were hospitalized and received ketorolac injections as a postoperative analgesic since February to April 2018 in the study site hospital. The types of surgery included in this study were general surgery, digestive surgery, and orthopedic surgery.

The subject collection was carried out by a consecutive sampling method and this study finally obtained a total of 72 patients. In general, the characteristics of the subjects in this study were general surgical patients aged 46-60 years with a mean age of 46.76±1.90 years, female gender, not smoking, with comorbid of hypertension and received ketorolac injection dose of 30mg every 8h during treatment (Table I). Also, the study subjects admitted the hospital with a pain scale of 2.13±0.28 and normal kidney function which was seen through normal BUN, creatinine, and GFR values.

The decrease in pain scale

This study was conducted with a one group pre-test post-test design so that the statistically
tested data were only the completely paired data. This caused the number of subjects analyzed on the comparison of pain scale on the day before surgery with the day one after surgery was not the same as in the analysis on the comparison of the pain scale on the day before surgery with the day two after surgery.

Ketorolac injections did not decrease the pain scale on day one after surgery but were able to decrease the pain scale on day two after surgery (Figure 1). However, the decrease in the pain scale on day two after surgery produced by ketorolac injection was not significant. This indicated that the problem of postoperative pain was still unresolved using ketorolac injections as is presented in the pain management guidelines published by the American Pain Society (2016) which states that less than half of patients with postoperative pain report adequate postoperative pain relief (Chou et al., 2016).

A similar study was conducted by Eftekharian and Pak (2017) in which the study investigated the effects of intravenous ketorolac on postoperative pain in patients with mandibular fractures, but the pain measured was early postoperative pain. One study showed that ketorolac did not provide a pain scale that was different significantly with the placebo group in the first 4h after surgery (pain intensity 1.08±0.49 vs 1.04±0.68; p=0.135; scores on Visual Analog Scale (VAS) >1=16% compared to 24%, p=0.725) (Eftekharian and Pak, 2017). There is still no agreement of opinion in the definition of relieving or control of pain although O'neil (2016) states that one example of pain management in patients with acute pain is pain with a scale of less than 3 (O'Neil, 2016).

The decrease in renal function

The study subjects included in the analysis of the decrease in kidney function in this study were subjects with complete creatinine level data before undergoing surgery and on day two after surgery so that the number of subjects analyzed amounted to only 23 patients. This study analyzed the decline in kidney function of the study subjects using serum creatinine and GFR parameters.

The results showed that ketorolac injections caused an increase in serum creatinine levels on day two after surgery (Figure 2). Although the increase in the value was slight (0.4mg/dL), the results of statistical tests showed that the increase in the value was statistically significant. The GFR parameter was used to ensure that changes in kidney function occur because creatinine is a less specific parameter of kidney function. Creatinine is the end-product of nitrogen metabolism which is excreted in the urine. Creatinine production reflects total body muscle mass (Rae et al., 2018) so that the same creatinine levels among subjects could show different kidney function due to different muscle mass in different ages and genders. Therefore, this study used GFR which is a more specific kidney function parameter. The results of the study also showed that the decline in kidney function in the subjects of the study consistently occurred when viewed using the GFR parameter (Figure 3).
Authors found that it is difficult to find relatively new studies of ketorolac, but because ketorolac is a drug belonging to the group of Nonsteroidal Anti-inflammatory Drugs (NSAIDs) (Candido et al., 2017) and because studies of NSAIDs generally included various types of NSAIDs including ketorolac, then a discussion of NSAID adverse effects on the kidneys could apply to ketorolac. Candido et al. (2017) mentioned that NSAIDs only caused a temporary mild decrease in kidney function on day one after surgery. The decrease was measured using creatinine clearance parameters in 1,450 healthy adults with a yield of 16 mL/min [5-28 mL/min] which was not significant compared to the placebo group (Candido et al., 2017). A systematic review study conducted by Zhang et al. (2017) showed that patients who were exposed to NSAIDs had an increased risk of Acute Kidney Injury (AKI) (OR 1.73 [1.44-2.07]) (Zhang et al., 2017).
The results of the study are supported by a study conducted by Chou et al. (2016) whose results showed that the use of NSAIDs increased the risk of AKI (OR 2.73 [2.28-3.28] in patients with current NSAID use and with OR 1.17 [1.01-1.35] in patients with NSAID use 30 days beforehand) (C.-I. Chou et al., 2016). NSAIDs do not only increase the risk of AKI but also End-Stage Renal Disease (ESRD) as in the results of a study conducted by Chang et al. (2015) (OR 2.72 [2.60-2.82]) (Chang et al., 2015).

Two mechanisms of NSAIDs-induced AKI in children have been estimated. Both mechanisms may also apply to cases of AKI induced by NSAIDs in adults. The two mechanisms are the mechanism of hemodynamic changes and Acute Interstitial Nephritis (AIN). The first mechanism causes around 78% of AKI cases to occur, while the second mechanism is around 22% (Misurac et al., 2013). In the first mechanism, NSAIDs inhibit cyclooxygenase (COX) so that prostaglandin synthesis is inhibited. Prostaglandin acts as a vasodilation regulator that maintains adequate renal perfusion. The inhibition of prostaglandin synthesis causes uncontrolled vasoconstriction in afferent arterioles so that GFR decreases and causes acute ischemia and acute tubular necrosis. The AKI case in the second mechanism is also caused by NSAIDs which also inhibit COX, but the effect of this is the shift in arachidonic acid metabolism towards the pathway that synthesizes more leukotrienes, whereas leukotrienes are involved in the activation of the inflammatory response (Faught et al., 2015).

Complaints which suspected as adverse effects of ketorolac injections

The two instruments generally used to measure adverse effects are Naranjo and the WHO-UMC scale (Belhekar et al., 2014), but the measurement of adverse effects in this study used a questionnaire developed by Naranjo. This questionnaire uses a scoring system that is divided into five probability categories consisting of definite, probable, possible and doubtful. Most of the complaints issued as the adverse effects of ketorolac injections in this study were categorized as probable category with a score of 5-8 (max 13).

The results showed that the most and least common adverse effects of ketorolac injections were bloating (18.06%) and constipation (1.29%) (Figure 4). The overall incidence of complaints suspected of being an adverse effect of ketorolac injections was high because complaints occurred in almost half of the study subjects (43.06%). The results of this study were slightly different from the results of a study conducted by Siribumrungwong et al. (2015) which, in that study the most common ketorolac adverse effects were nausea/vomiting (37.5%), while the least was constipation (3.1%) (Siribumrungwong et al., 2015). However, in this study, nausea was the second most common complaint suspected as an adverse effect of ketorolac injections with a proportion of 16.67%.
Another important adverse effect to note was that ketorolac could increase the risk of gastrointestinal bleeding the highest compared to other NSAIDs (OR 14.54 [5.87-36.04]) (Gonzalez et al., 2010) based on adverse effect conducted by Gonzalez et al. (2010).

This study certainly had limitations. This study was an observational study that did not provide intervention to study subjects such as temporary stopping the ketorolac injections and re-challenging it after being stopped so that the measurement of the adverse effects of ketorolac injections in this study did not produce adverse effects that could reach definite degree. Complaints with probable degree still leave the possibility that the complaint was not due to ketorolac injections, but due to other factors such as patient comorbidities so that further studies with the interventional design conducted prospectively could improve the results of this study.

CONCLUSION
The conclusion that could be drawn from the results and discussion of this study is that two days of ketorolac injection use was not able to significantly decrease the postoperative pain scale statistically. Also, gastrointestinal adverse effects occurred with the two most common forms of bloating and nausea. The study also showed that the use of ketorolac injections for two days decreased kidney function as seen from an increase in serum creatinine levels and a decrease in GFR in the study subjects. Those three things could be the basis for consideration of the use of ketorolac injections for only two days following as regulated in the Indonesian National Formulary.

ACKNOWLEDGMENT
The authors say thank you to Agung Widianto, Adam Moeljono, and Wahyu Kartiko Tomo as the physicians who helped investigators to collect the study subjects. The authors also say thank you to Partini and the other nurses who practiced on the surgical ward of study site who had helped in taking blood samples from the study subjects.

REFERENCES

An Observational Study in Patients with Postoperative Pain

Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF Arthritis Care Res. (Hoboken)), 63, S240–S252.

