Pharmacokinetics Interaction and Biodistribution of 5 Fluorouracil with Radiopharmaceuticals 99mTc-Glutathione for Cancer Diagnostic in Mice Cancer Model

Ahmad Kurniawan*, Teguh Hafiz Ambar Wibawa, Iswahyudi, Isti Daruwati

Center for Applied Nuclear Science and Technology-National Nuclear Energy Agency (BATAN), 40132, Bandung, Indonesia

ABSTRACT

Radio pharmaceutical 99mTc-Glutathione has been developed for cancer diagnostic in nuclear medicine. Interactions between chemotherapy drugs and radiopharmaceuticals can altered radiopharmaceuticals performance. Drug interaction 5-fluorouracil (5-FU) with a radiopharmaceutical 99mTc-Glutathione in mice cancer model has been proven in pharmacokinetics study. The biological half-life distribution of 99mTc-Glutathione for cancer model mice when administrated with 5-FU become longer to 0.340±0.121h if compared with 99mTc-Glutathione. Biological half-life elimination for cancer model mice given with 99mTc-Glutathione is 72.712±2.427h. Administration of 5-FU makes the biological half-life elimination of 99mTc-Glutathione shorter to 17.030±3.459h. Biodistribution study of 5-FU continued with 99mTc-Glutathione for cancer model mice showed higher physiological uptake in the kidney was observed (39.77±2.70%ID/g) for 99mTc-Glutathione has lower uptake on kidney (29.55±3.73 %ID/g) with p<0.05. Based on calculation on cancer model mice with colon cancer compared with muscle, shown target/non-target (T/NT) ratio 2.93 for 5-FU continued with 99mTc-Glutathione has ratio 0.42. Low ratio T/NT may affect to poor organ visualization for cancer diagnosis. Acute toxicity study has shown drugs safety for clinical purpose. The knowledge about chemotherapy drug interaction with a radiopharmaceutical is important to have a correct diagnosis of the patient on clinical application.

Keyword: 5 Fluorouracil, 99mTc-Glutathione, Drug-Radiopharmaceutical Interaction, Cancer Diagnostic, Nuclear Medicine.

INTRODUCTION

Cancer is an important cause of death with high morbidity in human. The Global Cancer Statistic indicate in 2018, there are 18.1 million new cases and 9.6 million deaths from cancer. The cumulative risk of incidence of cancer indicates that 1 in 8 men and 1 in 10 women will develop cancer in a lifetime (Bray et al., 2018). Based on Basic Health Research in Indonesia 2007, cancer is the 7th cause of death among all cases with national prevalence is 4.3 for 1000 population. The leading cancer case are breast cancer, cervical cancer, lung cancer and colorectal cancer (Wahidin et al., 2012).

A radiopharmaceutical is a pharmaceutical that contains radioactive isotopes that used for diagnostic purposes and treatment of human diseases (Saha and Gopal, 2010). Radiopharmaceuticals usually don't have pharmacologic effects, unlike conventional drugs. When radiopharmaceutical is used for therapeutic purposes there are some exceptions. Radiolabeled particles have some potential mechanical issues such as the embolic effect of 99mTc-macroaggregated albumin and 90Y-resin particles. A sufficient number of particles 99mTc-macroaggregated albumin need to be administered to avoid a non-uniform spatial distribution of radioactivity in lung region. Excess of the particles can produce acute toxicity, especially in patients with severe pulmonary hypertension (Marti, 2013).
5-Fluorouracil is an analog of uracil with a fluorine atom at the C-5 position in place of the hydrogen atom. Mechanism of action 5-Fluorouracil (5-FU) has rapidly entered the cell using the same facilitated transport mechanism as uracil then catalyzed primarily in the liver. 5-FU has been used for more than 40 years in the treatment of colorectal cancer. This drug is administered intravenously for a clinical procedure and has been used in a variety of different schedules to determine the optimum dose and method. The overall response rate has a good result as a single agent for treatment of both advanced and early-stage colorectal cancer (Longley et al., 2003).

Researcher was identified 5-FU induce senescence cell in both cell types. Signaling pathways were activated by senescence cells that lead to the production and release of cytokines, chemokines, and growth factors to induce neighboring cells to enter senescence. 5-FU also has a possible mechanism to manifestations of cardiotoxicity. In the other hand suggest potential prevention strategies to reduce these severe side effects of an otherwise very useful drug family for the treatment of numerous cancers (Focaccetti et al., 2015). Wongso and Zainuddin (2013), prove that 99mTc-Glutathione effectively reaches the cancer organ at 3h post-injection with a concentration of 0.95% ID/g. The imaging test results also showed the highest accumulation of 99mTc-Glutathione at 3h post-injection and high values of renal system.

Effect of cancer chemotherapeutics drugs interaction with radiopharmaceutical has been studied for some drugs. Doxorubicin interaction with 99mTc-DTPA was observed, mean activity in rat urinary system decreased while a significant increase in liver uptake. (Razaq et al., 2017).

Mahendra et al., (2018) were observed interaction of NSAID drugs such as meloxicam and sodium diclofenac increased clearance of 99mTc-MDP in the blood and decrease uptake on the bone of rats. To our knowledge, there has been no report of preclinical study interaction 5-FU with radiopharmaceutical. 99mTc-Glutathione. Thus, we aimed to investigate the biodistribution, pharmacokinetics and acute toxicity study in normal and cancer model mice.

MATERIAL AND METHODS

Glutathione (Sigma Aldrich), 5-Fluorouracil (Kalbe Farma), SnCl₂ (Sigma Aldrich), Na99mTcO₄ was eluted from the commercial 99mMo/99mTc generator (Polatom), Acetone, NaCl, TLC-SG (Bioscan), aquabidest (IPHA Laboratories), 3MM Whatmann chromatography paper and pH Universal indicator were obtained from E.Merck. The Equipment used too radioactivity counting were are Single Channel Analyzer with NaI(Tl) detector (Ortec).

Animal

Thirty four male Balb/C mice, 28 days old from PT Biofarma, Tbk Bandung, Indonesia were housed in polypropylene cages (38X30 cm) at constant temperature (26±1°C) and humidity (60±5%) with a 12h dark cycle. The mice were feed standard (CP05) and water ad libitum then divided into two groups. Group I normal mice; group II cancer model mice induce with Azoxymethane (Sigma Aldrich) and DSS 2.5% (Sigma Aldrich). All protocol was approved by the ethics committee for the care and use of laboratory animal (KEPPHP BATAN) under protocol number 002/KEPHP-BATAN/VII/2018. Mice in Cancer model group were induced intraperitoneal by Azoxymethane (AOM) dissolved in 0.9% Sodium Chloride with doses 10mg/kg BW. After one week of induction, mice were given standard feed and ad libitum water. Mice were given Dextran Sodium Sulfate 2.5% in drinking water for one week and then no further treatment for 18 weeks (Tanaka et al., 2003).

Preparation of 99mTc-Glutathione

Preparation of Glutathione dry diagnostic kit was performed with 20mg Glutathione dissolved in 1mL aquabidest while stirring, 0.3mL of SnCl₂.2H₂O (1mg/mL of HCl 0.01N) was added. The pH adjusted to pH 7, stirred for a few minutes and filtered. The mixture was dried using Freeze Dryer for 22 hours and stored at about 4°C. Labeling reaction of the 99mTc-Glutathione complex was performed with added 2.5mL of pertechnetate into glutathione dry kit and the mixture was shaken for a few seconds and left to react for 5min at room temperature. The radiochemical purity of 99mTc-Glutathione complex was assessed by TLC using a TLC-SG with two solvent, NaCl and dried acetone (Zainuddin and Maula, 2010).

Pharmacokinetics study

Mice were divided into two groups (n=3) group I normal mice (99mTc-Glutathione and 5-FU continued with 99mTc-Glutathione) and group II cancer model mice (99mTc-Glutathione and 5-FU continued with 99mTc-Glutathione). Mice were treated with 5-FU 0.1mL, after five minutes gave a
single intravenous injection in the tail vein with 99mTc-Glutathione 0.1mL with radioactivity 100µCi. Blood collection in time interval 15min, 30min, 1, 2, 3, 4, 5, 6, 24, 25, and 26h. Blood collected from the tail vein and weighing with an analytical scale. The radioactivity of the blood sample was measured using Single Channel Analyzer with NaI(Tl) detector. After radioactivity counting, the percentage of total injection dose (%ID) in blood were calculated. Pharmacokinetics parameter of 99mTc-Glutathione was performed using PK Solver 2.0 (Zhang et al., 2010).

Biodistribution study

The experiment was performed on Balb/C mice weighing approximately 25g. Mice were divided into normal group and cancer model group (99mTc-Glutathione and 5-FU continued with 99mTc-Glutathione). The 5-FU was injected into tail vein of the animal (0.1mL), after 5min then 99mTc-Glutathione was given 100µCi into vein tail. Then after one hour mice were euthanized and the tissue of interest was collected. All tissue and blood were weighed and counted for radioactivity using single channel analyzer with NaI(Tl) detector. The percent of radioactivity per gram of tissue weight (% Injected activity/g tissue) was determined using the following formula:

$$\text{%ID} = \frac{\text{Counts per gram organ}}{\text{Counts dose given}} \times 100\%$$

Toxicity study

Healthy Balb/C mice were divided into two groups, normal and cancer model (n=5). The 5-FU was injected into tail vein of the animal (0.1mL), after 5min then 99mTc-Glutathione was given 100µCi into tail vein and animal activity was observed shortly after being injected 1, 2, 3, and 24h, up to 14 days. The following parameters were evaluated mortality, clinical observation of animal was performed for sickness symptoms due to treatment. Change in their appearance (piloeraction, kyphosis, disheveled fur), behavior (grooming or nesting) and activity (altered exploring) (Silveira et al., 2016).

Data analysis

All average values are given as mean ± standard deviation. The comparison of pharmacokinetics parameter and biodistribution of 99mTc-Glutathione and 5-FU with 99mTc-Glutathione in normal mice and cancer model mice was determined using t-test. The acceptable probability for a significant difference was p<0.05. Data were analyzed using SPSS 24 software.

RESULT AND DISCUSSION

Radiopharmaceutical has a quality requirement in the application for in vivo study. The quality requirement is clarity, sterility, non-pyrogenicity, pH and radiochemical purity. In this study, radiochemical purity testing was performed using two ascending chromatography system. Radiochromatogram of 99mTc-Glutathione, where acetone used as a mobile phase, 99mTc-Glutathione and 99mTcO$_2$ stayed at the origin (RF=0) while 99mTcO$_4^-$ moved with the solvent to give RF=1 (Figure 1). Radiochromatogram of 99mTc-Glutathione where saline solution used as a mobile phase 99mTcO$_2$ stayed at the origin (RF=0) while 99mTc-Glutathione and 99mTcO$_4^-$ moved with the solvent to give RF=1 (Figure 2). Result of this test showed that 99mTc-Glutathione had 99.27% radiochemical purity (n=3).
Table I. Pharmacokinetics parameter of 99mTc-Glutathione and interaction of 5-FU with 99mTc-Glutathione in normal and cancer model mice.

<table>
<thead>
<tr>
<th>Pharmacokinetics Parameter</th>
<th>Normal Mice</th>
<th>Cancer Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>99mTc-Glutathione</td>
<td>5-FU + 99mTc-Glutathione</td>
</tr>
<tr>
<td>K12</td>
<td>0.001±0.001</td>
<td>0.001±0.001</td>
</tr>
<tr>
<td>K21</td>
<td>0.134±0.275</td>
<td>0.033±0.027</td>
</tr>
<tr>
<td>Cmax</td>
<td>6.132±5.161</td>
<td>3.299±0.879</td>
</tr>
<tr>
<td>t1/2 α</td>
<td>0.004±0.001</td>
<td>0.347±0.225</td>
</tr>
<tr>
<td>t1/2 β</td>
<td>5.310±1.050</td>
<td>11.497±2.827</td>
</tr>
<tr>
<td>AUC 0-infinity</td>
<td>12.264±10.322</td>
<td>6.931±1.181</td>
</tr>
</tbody>
</table>

NS : Not Significant; S : Significant

This 99mTc-Glutathione radiopharmaceutical confirmed to United States of Pharmacopoeia, which state that the radioactive purity has to be greater than 95%. The solution was clear and colorless with pH = 7.

Pharmacokinetics study

The pharmacokinetic study was performed to determine changes in pharmacokinetics parameter of 99mTc-Glutathione in Balb/C mice which have been previously treated with 99mTc-Glutathione and 5-FU continued with 99mTc-Glutathione. The result (Table I) that the administration of 5-FU and followed with 99mTc-Glutathione affected the pharmacokinetics parameter of 99mTc-Glutathione I.V injection in both normal mice and cancer model.

The result of t-test for pharmacokinetics parameter (Table I), in normal mice there was significant difference $p<0.05$ for biological half-life elimination of 99mTc-Glutathione when administered with 5-FU become longer to 11.497±2.827 h. Biological half-life distribution and elimination of 99mTc-Glutathione for cancer model mice when administered with 5-FU also changed, biological half-life distribution become longer to 0.340±0.121 hours and biological half-life elimination become shorter to 17.030±3.459 hours compared with 99mTc-Glutathione single administration 72.712±2.427h.

Administration of 5-FU followed with 99mTc-Glutathione I.V. injection also change AUC0-inf value (area under the curve) and Cmax (peak concentration) from normal and cancer model mice compared with 99mTc-Glutathione but not significantly different ($p>0.05$) based on statistical analysis. 99mTc-Glutathione and combined with 5-FU has the same absorption rate for normal and cancer model mice.

Radioactivity half-life of radiopharmaceutical in blood can be approximated by two phases. The first is distribution half-life that is during radioactive material spreads throughout various organs or tissues, reaching organ specific concentrations. The second is elimination half-life, the material is eliminated by biochemical processes and physical radioisotope decay (Shuryak and Dadachova, 2015).

The localization mechanism of 99mTc-Glutathione has never been clarified but in general 99mTc-Glutathione increased in blood flow and capillary permeability are the main mechanism. The blood clearance and wash out of 99mTc-Glutathione from tumoral and another tissue was not rapid because protein binding at the site of localization might occur for the prolonged retention of 99mTc-Glutathione on target tissue (Ercan and Senekowitsch-schmidtk, 2000), it has been proven in cancer model mice showed the biological half-life elimination (t1/2β) become prolonged. Administration of 5-FU continued with 99mTc-Glutathione in cancer model mice also made the blood clearance faster may occur because of 5-FU binding the site of localization in the organ but the mechanism it has not been clear.

Compared with normal mice group, 5-FU administration followed with 99mTc-Glutathione causing the half-life elimination (t1/2β) to be longer, this is probably due to 5-FU causes retention of 99mTc-Glutathione and radioactivity become prolonged on the blood.

Biodistribution study

Biodistribution of 99mTc-Glutathione and 5-FU in normal and cancer model mice were studied at 1h post-injection to evaluate the accumulation of radiopharmaceutical. Based on data for normal mice higher physiological uptake of
In this work, the bone (36.88±6.89%ID/g) was the organ with the highest accumulation, followed by the kidney (29.55±3.73%ID/g). The second organ with the highest accumulation was the bone, (7.11±1.58%ID/g) and (10.10±4.28%ID/g) respectively. Lower uptake in other organ 1 hour after injection was muscle (1.13±0.76%ID/g) (0.94±0.40%ID/g), heart (1.87±1.03%ID/g) (1.70±0.84%ID/g), and stomach (1.77±0.45 %ID/g) (3.73±2.75%ID/g). Administration of 99mTc-Glutathione compared with 5-FU followed by 99mTc-Glutathione change the biodistribution value for organ in normal mice but not significantly different based on statistical analysis with p>0.05.

The result of t-test between normal and cancer model group for organ showed there was no significant difference in biodistribution between administration of 99mTc-Glutathione and 5-FU followed with 99mTc-Glutathione p>0.05 for normal mice. Biodistribution of 99mTc-Glutathione on cancer model mice showed that data was significantly different increased the 99mTc-Glutathione level to the kidney. High concentration on kidney due to the metabolism of 99mTc agents on renal system. Administration of 5-FU increased the retention of 99mTc-Glutathione on kidney and reach high concentration. 5-FU interaction with 99mTc-Glutathione based on biodistribution study compared data in both normal and cancer mice do not affect the physiologic state of the target organs.

5-FU is anticancer drug that has been used to treat various type of malignancies cancer. This drug was catabolized to inactive metabolites by dihydropyrimidine dehydrogenase (DPD), cytotoxic effects on tumor cells and normal tissues through anabolic actions. 5-FU was inhibiting DNA synthesis which in turn affect RNA transcription and function. The 5-FU metabolite, fluorodeoxyuridine mono-phosphate (FdUMP), forms a ternary complex with thymidylate synthase (TS) and 5,10-methylene tetrahydrofolate (CH2THF), thereby inhibiting the synthesis of DNA (Miura et al., 2010).

Several studies have investigated used 99mTc-Glutathione as a tumor-specific imaging agent. Cancer cell if compared with normal cell posses higher Reactive Oxygen Species (ROS) level and enhanced antioxidant system (Woo et al., 2014). Ercan & Senekowitsch-schmidtke (2000) was observed that 99mTc-Glutathione has a significant increase in tumor uptake at 1h post-injection with tumor 3.27±0.80% injected dose/g. Uptake may
increase at 3h post-injection, because of Glutathione mechanism of action.

Availability of 99mTc-Glutathione to be used in cancer patient under treatment of 5-FU is not recommended if we compare between the target and non-target. Based on calculation on cancer model mice with colon cancer compared with muscle shown target/non-target (T/NT) ratio 2.93 whereas, if 5-FU followed by 99mTc-Glutathione has ratio 0.42. Low ratio T/NT may affect to poor organ visualization for cancer diagnosis.

Toxicity study result

No death or clinical sign of peracute toxicity was observed in normal and cancer model groups during the 14-days study period. All the animals seemed healthy throughout the course of the study. No signs of distress, morbidity, injury or changes in behavior shortly after being injected with 5-FU and 99mTc-Glutathione, 1, 2, 3, 24 hours, and 14 days.

CONCLUSION

The knowledge about chemotherapy drug interaction with a radiopharmaceutical is important to determine the correct diagnosis of the patient in clinical application. The present work was designed to study 5-FU interaction with 99mTc-Glutathione both in normal and cancer model mice. Change in pharmacokinetics parameters occur in 5-FU administration followed by 99mTc-Glutathione especially in the biological half-life of cancer mice, the biological half-life elimination becomes longer and biological half-life biodistribution become faster. Biodistribution studies show that 5-FU administration followed by 99mTc-Glutathione does not change the uptake of 99mTc-Glutathione in normal mice but in cancer model mice the uptake in kidney significantly increased. Further study is needed to understand the cellular mechanism for 5-FU interaction with 99mTc-Glutathione.

ACKNOWLEDGMENT

Authors acknowledge PSTN BATAN for research financial support and wish to thank Mr.Ahmad Sidik as a technician in Laboratory Animal PSTN-BATAN.

REFERENCES

Razaq T., Nisar H., Roohi S., Shehzad A. and Ahmad I. 2017. Administration of 99mTc-DTPA in combination with doxorubicin alters the