Hypoglycemic Activity and Pancreas Protection of Combination of *Morinda citrifolia* Linn. Juice and *Curcuma xanthorrhiza* Roxb. Juice on Streptozotocin-Induced Diabetic Rats

Bilal SA Santoso 1,3*, Sudarsono 2, Agung E Nugroho 2, Yosi B Murti 2

ABSTRACT

Mengkudu fruit and *temulawak* rhizome which contains scopoletin and curcumin, respectively, were used traditionally as antidiabetic. Both compounds have strong antioxidant activity. This research aimed to determined the antihyperglycemic and pancreas protection of combination of *mengkudu* fruit juice (MFJ) and *temulawak* rhizome juice (TRJ) on streptozotocin (STZ) induced diabetic rats. Rats were divided into 7 groups, each group consist of 5 rats. All groups, except normal group were treated accordingly for 28 days. Blood samples were taken from the plexus retroorbitalis for examination of blood glucose levels on day-8th, 15th, 22nd, and 29th. On the day-29th, blood samples were examined for malondialdehyde (MDA) levels. At the end of the experiment, the rats were sacrificed for examination of pancreatic morphological conditions. The results showed that diabetic rats given MFJ-TRJ combination experienced a significant decrease in blood glucose levels, a significant decrease in MDA levels and improvement pancreas morphology when compared with the negative control group. The conclusion of this research showed the combination of MFJ-TRJ has hypoglycemic activity and can fix condition of pancreas morphology.

Key words: hypoglycemic, pancreas protection, combination juice, *mengkudu, temulawak*

INTRODUCTION

Diabetes mellitus is a metabolic disease which is marked by a hyperglycemia condition. Hyperglycemia occurs due to pancreatic damage or failure of insulin secretion (Rathinam and Pari, 2016) causes interference of glucose metabolism, the degradation of the glucose entry into cell and increase of glucose release from liver into circulation (Huang et al., 2016). This condition can lead to lipid metabolism failure (Kumar et al., 2016). Hyperglycemia related to disfunction or damages on β pancreas cells.

Alkaloid in *mengkudu* fruit was able to revitalize and regenerate death cells until they are regenerated, it naturally can increase immune system, increase function of cells and fix damage cells in body that are caused of disease or aging process (Sayuti and Yennirina, 2015). Compound that has responsible toward pharmacology effect of *temulawak* rhizome is curcumin, a main chemical constituent in *temulawak* rhizome (Itokawa et al., 2008; Kant et al., 2014).

MATERIALS AND METHODS

Materials

Mengkudu fruit and *temulawak* rhizome were obtained from *Materia Medika Batu* office, East Java Province, Indonesia. Male rats Wistar strain were obtained from Pharmacology Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada (UGM). Scopoletin standart (Fluka), curcumin standart (isolat 95%, TLC), reagent Lipid Peroxidation (MDA) Colorimetric/Fluorometric Assay Kit, reagent Glucose Oxidase-Phenol Aminoantipyrine (GOD-PAP) from Diagnostic System International (Diasys), Hematoxylin and Eosin.

Ethical clearance

Ethical clearance number: 445/KEC-LPPT/IV/ 2016 was obtained from the ethical...
committee in Integrated Research and Testing Laboratory - LPPT UGM.

Preparation of Juice

On 1200g *Mengkudu* fruit were washed until they are clean with running water and drained. They were entered in juicer extractor then pressed which produces MFJ 210mL and weight 600g. The result was thick *mengkudu* fruit juice and pulp that were separated. It is the same to do with *temulawak* rhizome juice, 1080g *temulawak* produces TRJ 345mL and weight 560g.

Phytochemical Qualitative Analysis

Alkaloid

On 1mL MFJ and 1mL TRJ was inserted into each 4 reaction tubes and added chloroform 5 drops on each tube. Tube 1 as control, tube 2 added Mayer’s reagent and positive if produce white precipitate, tube 3 added Draggendorff’s reagent and positive if produce orange precipitate, tube 4 added Wagner’s reagent and positive if produce brown precipitate.

Flavonoid

On 1mL MFJ and 1mL TRJ was inserted into different reaction tubes. Then each test tube was added 3 drops HCl 2N, a few Magnesium powder, 1 mL amyl alcohol, shaken ad homogeneous. Reaction is positive if produce yellow to red solution.

Phenolic

On 1mL MFJ and 1mL TRJ was inserted in different reaction tubes. Then each test tube was added 2-3 drops FeCl3 1%. Reaction is positive if produce black precipitate.

Saponin

On 1mL MFJ and 1mL TRJ was inserted in different reaction tubes. Then each test tube was added aquadest and shaken strongly. Reaction is positive if there was a foam on the surface.

Tannin

On 1mL MFJ and 1mL TRJ was inserted in different reaction tubes. Then each test tube was added aquadest and shaken strongly. Reaction is positive if produce dark red solution.

Quantitative Analysis with TLC-Densitometry Method

Scopoletin

TLC-densitometry method was performed on aluminium plates precoated with silica gel 60F254 as the stationary phase using ether-toluene-10% acetic acid (55:44:1, v/v/v) as mobile phase. Densitometric analysis was carried out at λ=210nm (Djatmiko et al., 2006).

Curcumin

TLC-densitometry method was performed on aluminium plates precoated with silica gel 60F254 as the stationary phase using ether-toluene-10% acetic acid (55:44:1, v/v/v) as mobile phase. Densitometric analysis was carried out at λ=426nm (Pothitirat and Gritsanapan, 2005).

In vivo experiment

Animal diabetic was done by inducing with single dose of 60mg/kgBW STZ intraperitontially (i.p) (Ragbetli and Ceylan, 2010). In day 4, blood glucose level was measured to confirm diabetic condition (>200mg/dL) (Muhtadi et al., 2015). Animal experiment were divided into 7 groups (normal, negative control, positive control, and four tests groups), each group consists of 5 rats. Glibenclamide 4.5mg/kg BW was used as positive control. Test groups consist of combination juice 1 (MFJ-TRJ ⅛:⅛), combination juice 2 (MFJ-TRJ ⅛:⅛), combination juice 3 (MFJ-TRJ ⅛:⅛), combination juice 4 (MFJ-TRJ 1:1). Dose of MFJ was 3.6mL/kg BW and dose of TRJ was 10mL/kg BW.

Blood glucose level

Blood glucose measurements were performed several times after STZ induction, the day-4th, day-11th, 18th, 25th, and 32nd. Blood glucose measurement using GOD-PAP method with Trinder's reaction principle. In this method, glucose was measured after enzymatic oxidation using the GOD (glucose oxidase) enzyme. The hydrogen peroxide (H2O2) formed then reacts with phenol and 4- aminoquinone with a POD (peroxidase) enzyme catalyst that forms quinonimine. The intensity of the pink color formed was
Hypoglycemic Activity and Pancreas Protection

Proportional to the glucose level in the sample at \(\lambda=546\text{nm}\) used on spectrophotometry (Barham and Trinder, 1972).

Lipid peroxidase

Plasma MDA measurement was done using TBARS method. This examination was based on condensation reaction between one MDA molecule with two molecules of TBA on low pH that happened in acid, temperature of 90-100ºC. Thiobarbituric Acid would give pink-chromogen color which could be read with spectrophotometer (Held, 2012).

The complete procedure, 0.5mL of the sample or standard Tetraethoxypropane (TEP) was added 2mL of 0.25 N cold HCl containing 15% Trichloro Acetic Acid (TCA), 0.38% Thio Barbituric Acid (TBA) and 0.5% Butylated Hydroxytoluen (BHT). This mixture was heated at 90-100ºC for 1h. After cooling, the solution mixture and standard were centrifuged 3500rpm for 10min. Absorbance was measured at \(\lambda=532\text{nm}\).

Histological study

The depiction of histopathological in pancreas system from many groups of rats in this research was conducted with the purpose to find out effect from examination sample toward animal experiment after being inducted with streptozotocin (Murthy et al., 2002). Tissue preparation of pancreas was colored with Hematoxylin-Eosin (HE). Hematoxylin would give blue color on cell nucleus and eosin gave red color on cytoplasm and extracellular matrix (Fischer et al., 2008). Furthermore, histology preparations were observed with microscope to find out morphology of the Langerhans insulai pancreas.

Statistical analysis

Analyses data was processed using IBM SPSS 23 statistical program. The data distribution test was done by Shapiro-Wilk test and the homogeneity test of the data was done by Levene's test so it was followed by Anova test. If data was not normally distributed and or not homogeneous, \(p<0.05\) was considered statistically significant. Then Anova test could not be done so that it was followed by Non-parametric Kruskall Wallis test. If the Kruskall Wallis Non-parametric test results indicate that at least one treatment differed significantly between treatment groups so that it was used the Mann Whitney test.

RESULT AND DISCUSSION

Phytochemical analysis

Qualitative phytochemical analysis of MFJ revealed the presence of alkaloids, flavonoids, phenolic, saponin, and triterpenoids while TRJ contains alkaloids, flavonoids, phenolics, and tannins. Scopoletin content of MFJ was 103.50\(\mu\text{g/mL}\), while curcumin content in TRJ was 553.64\(\mu\text{g/mL}\).

Malondialdehyde analysis

The result of MDA level measurement showed that MDA level from the lowest to the highest were normal group, positive control group, MFJ-TRJ group (1:1), MFJ-TRJ group (½:½), MFJ-TRJ group (¼:¼), MFJ-TRJ group (⅛:⅛), and negative control group. Data shows that the combination juice of MFJ-TRJ treatment could decrease lipid peroxidase activity.

MDA was one of last products from lipid peroxide cell membrane of free radical which excess or reactive oxygen species (ROS) so that MDA was used as measurement index of free radical activity in body (Hussain, 2002). The result of measurement of MDA level showed that MDA level in diabetic rats’ blood increased high enough toward normal control rats (Coskun et al., 2005). MDA level in diabetic rats’ blood showed lowest level of positive control group as well as giving combination juice. It showed that STZ induction in rats increased free radical in body because of radical nitrogen oxide (NO) released from STZ (Anwar and Meki, 2003). Diabetic rats that were given combination of MFJ-TRJ juice in 28 days showed degradation of MDA level significantly (Figure 1).

Blood glucose analysis

On the 28th day, after treatment, there was a significant normalization of fasting blood glucose, observed in diabetic experimental animals treated with combination juice and the diabetic standard with reference hypoglycaemic drug, glibenclamide as compared to diabetic untreated animals (Figure 2). In evaluation of the decrease of blood glucose level, glibenclamide administer gave decrease fasting
blood glucose that had $p > 0.05$ from giving combination juices MFJ-TRJ (1:1).

The reduction of blood glucose was caused by compound content of scopoletin and curcumin in combination of MFJ-TRJ juice. Scopoletin was derivate coumarin that could protect from hyperglycemia condition and resistance insulin (Chang et al., 2015). Scopoletin had hypotensive activity, antidepressant, hypolipidemic and hypoglycemic. Scopoletin could decreased blood glucose level and lipid level significantly rather than glimepiride (Verma et al., 2013). All active compound of mengkudu works synergistic in making antioxidiant effect and antihyperglycemic (Rao and Subramanian, 2008). Curcumin had antioxidiant activity and antiradical (Borra et al., 2013) so that it could prevented free radical. Free radical can caused oxidation reaction through metabolism process in body and response toward effect outside the body such as pollution exposure. Efficacy of curcumin in temulawak was to increase immune system (Kim et al., 2007; Yadav et al., 2005) and antidiabetic (Wu et al., 2014).

Histological analysis

In evaluation of the improvement of pancreatic morphology, glibenclamide could improve pancreatic morphology like administering combination MFJ-TRJ (½:½). The administering combination of MFJ-TRJ (½:½) have better involvement rather than the other combination juices or there was no pathological changes in insula Langerhans. It indicates that combination juice of MFJ-TRJ administering has activity as good as glibenclamide (Figure 3).
Glibenclamide as positive control has an effect of improved Langerhans cellular proliferation so that cell density in the Langerhans initiates was high. Glibenclamide worked by stimulating the release of insulin (Fuhlendorff et al., 1998) and increased insulin secretion due to glucose stimulation (Proks et al., 2002) so that glibenclamide could repaired pancreatic β cells because it could increased insulin secretion (Song, 2017). In contrast to the negative control, Langerhans insulai cells many occur vacuolisation signify the degeneration of endocrine cells due to induction of STZ. It says vacuolisation occurs when there was an empty space in the Langerhans insulai parenchyma, which was thought to be due to necrosis of cells in the Langerhans insulai (Yusasrini and Darmayanti, 2016).

CONCLUSION

Based on research that has been done, it can be concluded that combination of MFJ-TRJ (1:1) has hypoglycemic activity and MFJ-TRJ (¼:¼) can fix condition of pancreas morphology.

ACKNOWLEDGEMENT

I thank you to Director of Academy of Pharmacy of Putra Indonesia Malang, The Head of Pharmacy Science Study of Postgraduate Program and The Dean of Pharmacy Faculty of Universitas Gadjah Mada who have given opportunity for me to finish dissertation research in taking doctoral program.

REFERENCES

Song Z., 2017. Dietary curcumin intervention targets both white adipose tissue inflammation and brown adipose tissue thermogenesis (Thesis).

