EVALUATION OF IN VITRO AND IN VIVO ANTI-OXIDANT POTENTIAL OF Morinda reticulata GAMBLE TUBERS IN WISTAR ALBINO RATS SUBJECTED TO CCL4 AND PARACETAMOL INDUCED HEPATOTOXICITY

Raju Asirvatham*, Joshila Akhil

IntroducTion

Hepatic system plays a pivotal role in the metabolism of chemicals and foods for the regulation of internal environment (Periasamy et al., 2012). Because of its anatomical location and its great capacity for xenobiotic metabolism, it is frequently a target for toxic chemicals. Most of these toxic chemicals have been reported to generate free radicals and reactive oxygen species which are the major culprits in liver pathogenesis (Carmel et al., 2011). Drug exposure, ionizing radiations and environmental pro-oxidant pollutants induce free radical formation (Ragip et al., 2008). Lipid peroxidation initiated by free radicals is considered to be deleterious for cell membranes and has been implicated in a number of pathological situations. An imbalance between too much oxidative stress (OS) and too little antioxidant defence has been suggested to cause a variety of liver diseases. Antioxidants are radical scavengers, which protect the human body against free radicals (Mohammad et al., 2010). On the basis of evidence obtained from experimental research, antioxidants appeared promising...
in prevention and treatment of hepatic damage. Recent studies have suggested that natural antioxidants in complex mixtures ingested with the diet are more efficacious than pure compounds in preventing oxidative stress related pathologies due to particular interactions and synergism. It is evident that there is an increasing demand to evaluate the antioxidant properties of direct plant extract and there is a need for screening more bioactive plant products with antioxidant properties (Carmel et al., 2011). The present study was aimed to investigate, free radical scavenging potential of Morinda reticulata Gamble belongs to Rubiaceae family. It is a highly endangered medicinal plant of Southern Western Ghats of India (Rahul et al., 2012). In malayalam it is called Neyvalli. It is an arborescent climber, growing to a height of 20m. They are mainly used for treating jaundice (Thangaraj et al., 2014; Ijinu et al., 2011), back pain (Ijinu et al., 2011), blood purification (Thangaraj et al., 2014, Ijinu et al., 2011) and also used as laxative (Rahul et al., 2012) due to abundance of anthraquinone derivatives.

MATERIALS AND METHODS
Collection of plant material and preparation of extract
The tubers of Morinda reticulata Gamble (MR) was collected from the vicinity of kazhakoottam, Thiruvananthapuram, Kerala, India in the month of December 2014. The plant was identified and authenticated by Prof. Ramanibhai, HOD Department of Botany, Christian College, Kattakkada, Thiruvananthapuram. The herbarium specimen of the same is deposited at the Department of Pharmacognosy, Sree Krishna College of Pharmacy and Research centre, Parassala, Thiruvananthapuram (H.S.P.No: SKCPRC /COGNOSY /HS2014/003). Shade dried tubers of MR were cleaned, dried at room temperature and coarse powdered. The powdered drug was successively extracted in a Soxhlet apparatus with solvents of increasing polarity using petroleum ether, benzene, chloroform, ethanol and water. The extract was concentrated to dryness under reduced pressure and controlled temperature to get the dried crude extract.

Experimental animals
Adult of both sexes of Wistar rats with body weights of 180-230g was used in the study. The animals were maintained under standard environmental conditions (23-25°C, 12h/12h light/dark cycle) and had free access to standard rodent pellet diet and water ad libitum. The animals were acclimatized to the laboratory conditions for a week before the commencement of the study. Use of animals as per the experiment was approved by the institutional Animal Ethics Committee (Ref No: Joshua J U/M.Pharm/KUHS/2014/a&b).

Preliminary phytochemical analysis
All extracts except petroleum ether extract were subjected to preliminary phytochemical studies to identify the presence of various phytoconstituents (Kokate, 2007).

In vitro antioxidant studies
The following assay methods were performed as per Raju et al., 2013a.

DPPH radical scavenging activity
The stock solution was prepared by dissolving 24mg DPPH with 100mL methanol and stored at 20°C until required. The working solution was obtained by diluting DPPH solution with methanol. A 3mL aliquot of this solution was mixed with 100μL of the sample at various concentrations (1.25, 2.5, 5, 10, 20μg/mL). The reaction mixture was shaken well and incubated in the dark for 15min at room temperature. Then the absorbance was taken at 517nm. The control was prepared as above without any sample. The scavenging activity was estimated based on the percentage of DPPH radical scavenged as the following equation:

\[
\text{Scavenging effect (\%)} = \frac{\text{control absorbance-sample absorbance}}{\text{control absorbance}} \times 100
\]

Super oxide free radical scavenging activity (SOSA)
The reaction mixture contained 1mL of NBT solution (312μM prepared in phosphate buffer, pH-7.4), 1mL of NADH solution (936μM prepared in phosphate buffer, pH-7.4)
different extracts of MR in different concentration (1.25, 2.5, 5, 10, 20µg/mL) were added. Finally, reaction was accelerated by adding 100µL PMS solution (120µM prepared in phosphate buffer, pH 7.4) to the mixture. The reaction mixture was incubated at 25ºC for 5min and absorbance at 560nm was measured against methanol as a control. Percentage inhibition was calculated.

Scavenging effect (%) =
\[
\frac{\text{control absorbance-sample absorbance}}{\text{control absorbance}} \times 100
\]

Hydroxyl radical scavenging activity (HRSA)

The scavenging activity for hydroxyl radicals was measured with ferron reaction. Reaction mixture contained 60µL of 1.0mM FeCl₃, 90µL of 1mM 1,10-phenanthroline, 2.4mL of 0.2M phosphate buffer (pH 7.8), 150µL of 0.17M H₂O₂, and 1.0mL of extract at various concentrations (1.25, 2.5, 5, 10, 20µg/mL). Adding H₂O₂ started the reaction. After incubation at room temperature for 5min, the absorbance of the mixture at 560nm was measured with UV visible spectrometer. The percentage inhibition of hydroxyl scavenging activity was calculated using the following formula.

Percentage inhibition (%) =
\[
1 - \frac{\text{Absorbance(test)}}{\text{Absorbance(blank)}} \times 100
\]

Where, Absorbance (Test): Absorbance of the test (With extract) and Absorbance (Blank): Absorbance of the control (Without extract).

Reducing Power Assay (RPA)

A serial dilution of the extracts were performed (1.25, 2.5, 5, 10and 20µg/mL) in 0.2M phosphate buffer pH 6.6 containing 1% ferrocyanate. The mixture was incubated at 50ºC for 20min. 10% trichloroacetic acid (TCA, 2.5mL) was added to a portion of this mixture (5mL) and centrifuged at 3,000r.p.m for 10min. The supernatant was separated and mixed with distilled water (2.5mL) containing 1% ferric chloride (0.5mL). The absorbance of this mixture was measured at 700nm. The intensity of change in colour could be the antioxidant activity of the extracts. The percentage of inhibition of radical was calculated as:

Percentage inhibition (%) =
\[
\frac{\text{control absorbance-sample absorbance}}{\text{control absorbance}} \times 100
\]

Metal chelating activity (MCA)

Fifteen µL of 2mM FeCl₂ was added to 1mL of different concentrations of the extracts (1.25, 2.5, 5, 10, 20µg/mL). The reaction was initiated by the addition of 0.2mL of 5Mm ferrozine solution. The mixture was vigorously shaken and left to stand at room temperature for 10min. The absorbance of the solution was thereafter measured at 562nm. The percentage inhibition of ferrozine–Fe²⁺ complex formation was calculated as

Percentage inhibition (%) =
\[
\frac{(A₀ - Aₙ)}{A₀} \times 100
\]

where A₀ was the absorbance of the control, and Aₙ was the absorbance of the extract/standard. Na EDTA was used as positive control.

Acute toxicity study

Acute toxicity study was carried out on EEDB and AEDB following OECD guidelines (OECD 423).

Experimental design (in vivo)

Carbon tetrachloride (CCl₄) induced hepatotoxicity

Based on the in vitro antioxidant reports ethanol extract of *Morinda reticulate* (EEMR) and aqueous extract of *Morinda reticulate* (AEMR) were chosen for *in vivo* antioxidant study. Total 42 Wistar albino rats were divided into seven groups of 6 rats (180-230g) in each group (Periasamy *et al.*, 2012) Treatment protocol is as follows:

Group I: Vehicle control (1.0mL, p.o.) for 7 days, Group II: Treated with vehicle (1.0mL, p.o.) twice daily for 7 days and CCl₄ (1.5mL/kg) on seventh day (1:1of CCl₄ in olive oil), Group III: Treated with Silymarin (25mg/kg, p.o.) twice daily for 7 days and CCl₄ (1.5mL/kg, p.o.) on seventh day, Group IV: Treated with EEMR (200mg/kg) twice daily for 7 days and CCl₄ (1.5mL/kg, p.o.) on seventh
day, Group V: Treated with EEMR (400mg/kg, p.o) twice daily for 7 days CCl\(_4\) (1.5mL/kg, p.o) on seventh day, Group VI: Treated with AEMR (400mg/kg, p.o) twice daily for 7 days CCl\(_4\) (1.5mL/kg, p.o) on seventh day, Group VII: Treated with AEMR (200mg/kg, p.o) twice daily for 7 days CCl\(_4\) (1.5mL/kg, p.o) on seventh day. On the 8th day, 18h after the last dose of CCl\(_4\), blood was withdrawn from the retro orbital plexus under light ether anaesthesia following which they were sacrificed by an excess of anaesthetic agent for the isolation of liver for preparation of tissue homogenates and histopathological studies.

Paracetamol induced Hepatotoxicity

Wistar Albino rats (180-230g) of both sexes were used. Animals were randomized and divided into seven groups of six animals in each group, silymarin (25mg/kg) is used as the standard drug (Deepak et al., 2008). Group I: Vehicle control (1.0mL, p.o) for 7 days, Group II: Treated with vehicle (1.0mL, p.o) twice daily for 7 days and Paracetamol (2g/kg, p.o) on seventh day, Group III: Treated with Silymarin (25mg/kg, p.o) twice daily for 7 days and Paracetamol (2g/kg, p.o) on seventh day, Group IV: Treated with EEMR (400mg/kg, p.o) for 7 days and Paracetamol (2g/kg, p.o) on seventh day, Group V: Treated with EEMR (400mg/kg, p.o) twice daily for 7 days and Paracetamol (2g/kg, p.o) on seventh day, Group VI: Treated with AEMR (400mg/kg, p.o) twice daily for 7 days and Paracetamol (2g/kg, p.o) on seventh day, Group VII: Treated with AEMR (200mg/kg, p.o) twice daily for 7 days and Paracetamol (2g/kg, p.o) on the seventh day. The biochemical parameters were estimated after an overnight fast following the last dose. Blood and liver samples were collected for biochemical and histological studies.

Evaluation of antioxidant parameter Total protein (TP) (Biuret method)

The protein content of the tissue homogenates was measured by the method of Lowry et al., 1951. 0.5mL of tissue homogenate was mixed with 0.5mL of 10% TCA and centrifuged for 10min. The precipitate obtained was dissolved in 1.0mL of 0.1N NaOH and 0.1mL is used for the estimation. A 0.1mL aliquot was mixed with 5.0mL of alkaline copper reagent and allowed to stand at room temperature for 10min. 0.5mL of Folin’s phenol reagent was added and the blue color developed was read at 640nm after 20min. TP was expressed as g/dL.

Total protein in g/dL = \[
\frac{\text{absorbance}}{\text{C} \times \text{GSH concentration} \times \text{dilution factor}}
\]

where C refers to the protein concentration in standard protein solution in g/dL.

Reduced Glutathione (GSH)

Liver tissue samples were homogenized in 8.0mL of 0.02M EDTA in an ice bath (Ellman et al., 1961). Aliquots of 5.0mL of the homogenates were mixed in 15.0mL test tubes with 4.0mL distilled water and 1.0mL of 50% TCA. The tubes were centrifuged for 15min at approximately 3000r.p.m, the 2.0mL of supernatant was mixed with 4.0mL of 0.4M Tris buffer, pH 8.9, 0.1mL Ellman’s reagent [5,5-dithiobis(2-nitrobenzoic acid)] (DTNB) added and the sample shaken. The absorbance was read within 5min of the addition of DTNB at 412nm against a reagent blank with no homogenate. Results were expressed as μg/100mg tissue.

Malondialdehyde (MDA)

Liver tissues were homogenized with ice cold 1.5% thiobarbituric acid to make a 10% homogenate. Three milliliters of 1% phosphoric acid and 1mL of 0.6% thiobarbituric acid (TBA) aqueous solution were added to 0.5mL of 10% homogenate. The mixture was heated for 45min and after cooling; 4mL of n-butanol was added and mixed (Farida et al., 2013). The absorbance of butanol phase was measured at 535 and 520nm. The difference between the two measurements was used as the MDA value (nmol/g protein).

Super oxide dismutase (SOD)

Liver tissues were homogenized with 0.05M carbonate buffer at pH 10.2 containing EDTA. The tissue homogenates were centrifuged at 4°C for 15min at 15000g and supernatants were removed, kept on ice until the enzyme assay. 6-Hydroxydopamine hydrobromide was prepared in distilled water and added to the buffer containing tissue so that the final 6-OHDA concentration was 10-4M.
The increase in absorbance was then measured for 15s at 490nm using V-600 UV-VIS Spectrophotometer. Activity was expressed as a percentage inhibition of autoxidation in the tested sample, and this percentage was then expressed as μg/100mg tissue (Raju et al., 2013b).

HPTLC STUDY

Five μL of MR ethanol extract was spotted on TLC plate. The sample was spotted as sharp band of 6 mm width using spray on technique with a Camag 100μL sample syringe on pre-coated silica gel aluminium plate 60F254 (10x10cm) using a Camag Linomat V automatic sample applicator. The bands were applied at a distance of 10mm from the bottom edge of the plate and the distance between the two bands was 11.4mm.

Prior to chromatography procedure TLC plates were washed with ethanol and activated at 60ºC for 5min. Respective mobile phases (chloroform: methanol, 9:1) were added in TLC twin trough developing chamber. TLC developing chambers were closed with lids and to allow for saturation of solvent vapour. The sample loaded plates were kept in their particular mobile phase up to 70mm. The developing chamber assembles were kept aside for saturation and development of chromatogram for 30min at room temperature. After 30min, developed plates were allowed to dry by hot air. The plates were photo documented at UV 254 and 366nm using photo documentation chamber. Finally, the plates were fixed in scanner stage and scanning was done at 200-400nm. The plates were kept in photo documentation chamber and captured the images under, UV light at 254 and 366nm (Hassan, 2012).

Statistical analysis

All the values are presented as Mean ± Standard Error of Mean (SEM). Statistical significance was calculated by one way ANOVA followed by Students-Newman-Keuls comparison test p <0.001 was considered to be statistically significant. *In vitro* antioxidant activity was presented as Mean ± SEM.

RESULTS AND DISCUSSION

Phytochemical screening revealed that presence of phytosterol and tannin in petroleum ether extract, carbohydrate, anthraquinone, amino acid and protein in benzene extract, carbohydrate, anthraquinone and saponin in chloroform extract, carbohydrate, anthraquinone, tannins, flavonoid, saponin and phenolic compound in ethanol extract, Carbohydrate, anthraquinone, tannins, flavonoid and phenolic compound present in aqueous extract.

Acute toxicity study results revealed that EEMR and AEMR were administered separately up to 2000mg/kg BW and since these extracts did not produce any toxic symptoms of mortality, they were considered safe for further pharmacological screening.

The free radicals were scavenged by the extracts of various concentrations (1.25, 2.5, 5, 10, 20μg/mL) of the benzene, chloroform, ethanol and aqueous extracts of *M. reticulata* were tested for their antioxidant potency in different *in vitro* models and IC50 values (Table I).

Table I. *In vitro* antioxidant effect of benzene, chloroform, ethanol and aqueous extracts of *M. reticulata* on various assay methods

<table>
<thead>
<tr>
<th>Extracts</th>
<th>IC50 values (mcg/mL)</th>
<th>DPPH</th>
<th>SOSA</th>
<th>HRSA</th>
<th>RPA</th>
<th>MCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEMR</td>
<td>34.25±2.89</td>
<td>25.68±3.2</td>
<td>28.99±0.70</td>
<td>48.56±3.68</td>
<td>23.75±1.95</td>
<td></td>
</tr>
<tr>
<td>CEMR</td>
<td>28.5±1.44</td>
<td>25.43±2.87</td>
<td>20.83±0.25</td>
<td>30.69±1.90</td>
<td>20.62±1.56</td>
<td></td>
</tr>
<tr>
<td>EEMR</td>
<td>20.52±1.87</td>
<td>17.65±1.77</td>
<td>12.99±0.25</td>
<td>19.17±1.44</td>
<td>15.47±0.49</td>
<td></td>
</tr>
<tr>
<td>AEMR</td>
<td>24.39±0.60</td>
<td>22.55±0.29</td>
<td>16.40±0.40</td>
<td>22.85±2.09</td>
<td>18.51±0.34</td>
<td></td>
</tr>
<tr>
<td>Ascorbic acid (AA)</td>
<td>18.23±1.22</td>
<td>19.23±0.37</td>
<td>15.01±0.32</td>
<td>16.76±0.43</td>
<td>21.15±0.95</td>
<td></td>
</tr>
</tbody>
</table>

BEMR- Benzene extract of *M. reticulata*, CEMR- Chloroform extract of *M. reticulata*, EEMR- Ethanol extract of *M. reticulata*, AEMR- Aqueous extract of *M. reticulata*.
The scavenging effect on DPPH radical increased with the raise in concentration of each extract. The percentage inhibition of BEMR was varying from 10% with 1.25mcg/mL of the extract to 29% with 20mcg/mL of extract. Similarly the percentage inhibition of CEMR was varying from 12% with 1.25mcg/mL of the extract to 37% with 20mcg/mL of extract. The percentage inhibition of EEMR was varying from 18% with 1.25mcg/mL of the extract to 50% with 20mcg/mL of extract. Similarly the percentage inhibition of AEMR was varying from 16% with 1.25mcg/mL of the extract to 41% with 20mcg/mL of extract.
extract to 41% with 20 mcg/mL of extract. The IC₅₀ value of the BEMR, CEMR, EEMR and AEMR were calculated to be 34.25±2.89, 28.5±1.44, 20.52±1.87 and 24.39±0.6 mcg/mL while the ascorbic acid was 18.23±1.22 mcg/mL.

The hydroxyl radical scavenging activity (HRSA) also increased with respect to increase in concentrations of the extracts. The IC₅₀ values of BEMR, CEMR, EEMR and AEMR were found to be 28.99±0.70, 20.83±0.25, 12.99±0.25 and 16.40±0.40 mcg/mL respectively, while that of ascorbic acid was 15.01±0.32 mcg/mL. EEMR and AEMR extracts consumed lesser concentration than ascorbic acid in scavenging hydroxyl radical. Similarly in super oxide scavenging assay (SOSA), EEMR extract consumed lesser concentration (17.65±1.77) to scavenge the free radicals than the standard antioxidant ascorbic acid (19.23±0.37). The percentage of inhibition in SOSA scavenging assay was maximum (58%) at 20 mcg/mL of EEMR and 44% with AEMR. The IC₅₀ value of the BEMR and CEMR was calculated to be 25.68±3.2 and 25.43±2.87 mcg/mL. In reducing power assay (RPA), in presence of EEMR and AEMR, Fe³⁺/ferricyanide complex is reduced to the ferrous form.

The percentage inhibition of BEMR was varying from 11% with 1.25 mcg/mL of the extract to 21% with 20 mcg/mL of extract. Similarly the percentage inhibition of CEMR was varying from 17% with 1.25 mcg/mL of the extract to 33% with 20 mcg/mL of extract. The percentage inhibition of EEMR was varying from 29% with 1.25 mcg/mL of the extract to 77% with 20 mcg/mL of extract. Similarly the percentage inhibition of AEMR was varying from 30% with 1.25 mcg/mL of the extract to 61% with 20 mcg/mL of extract. The IC₅₀ value of the BEMR, CEMR, EEMR and AEMR were calculated to be 48.56±3.68, 30.69±1.90, 19.17±1.44 and 16.76±0.43 mcg/mL while the ascorbic acid was 16.76±0.43 mcg/mL. The absorbance of ferrozine-Fe²⁺ complex reduced with respect to the concentration of extracts. Upon the reduction of the redox potential, in such a way that chelating effect with a metal ion which is effective like a secondary antioxidant and thereby stabilize the oxidized form of the metal ion.

In Metal chelating assay (MCA), the percentage inhibition of BEMR was varying from 17% with 1.25 mcg/mL of the extract to 40% with 20 mcg/mL of extract. Similarly the percentage inhibition of CEMR was varying from 19% with 1.25 mcg/mL of the extract to 44% with 20 mcg/mL of extract. The percentage inhibition of EEMR was varying from 24% with 1.25 mcg/mL of the extract to 65% with 20 mcg/mL of extract. Similarly the percentage inhibition of AEMR was varying from 25% with 1.25 mcg/mL of the extract to 54% with 20 mcg/mL of extract. The IC₅₀ value of the BEMR, CEMR, EEMR and AEMR were calculated to be 23.75±1.95, 20.62±1.56, 15.47±0.49 and 15.51±0.34 mcg/mL while the ascorbic acid was 21.15±0.95 mcg/mL.

Antioxidant potential of EEMR and AEMR on continuous 7 days oral administration to CCİ₄ administered rats and the assessment parameters were summarized (Table II). The pre-treatment with extracts significantly (P<0.001) reversed the levels of total protein, GSH and SOD near to normal. CCİ₄ administration causes significant (P<0.001) decrease in total protein, GSH, SOD and increased level of MDA were found with the CCİ₄ control group. After 7 days treatment to group 4 to 7 with EEMR and AEMR, both doses restored the altered antioxidant parameters to the normal group.

Administration of paracetamol (2g/Kg) markedly reduced the levels of hepatic antioxidant enzymes and reduced glutathione in the positive control group (Group 2). The MDA levels were markedly increased in the positive control group. Hepatic levels of SOD decreased to 5.6±0.46, reduced glutathione to 2.03±0.02 and total protein to 3.7±0.312 in positive control animals compared with the normal control rats. Higher doses of EEMR and AEMR exhibited significant (p<0.001) increase in the levels of SOD, reduced glutathione and total protein levels whereas a lower dose of AEMR was less significant (p<0.01) on rising of total protein in extract treatment group. There was a significant (p<0.001) decrease in MDA levels with all the

Raju Asirvatham

Volume 28 Issue 3 (2017)
doses of extracts other than the lower dose (p<0.01) of AEMR (Table III). The liver protein content also restored more or less to normal in extracts treated rats.

HPTLC study

The mobile phase selected for the HPTLC studies of EEMR was chloroform-methanol at the ratio of 9:1. By performing TLC with the mobile phase identified after trial and error method by trying different mobile Phase. Detection was performed under UV 254 nm and 366 nm and after spraying with Godin reagent (1% vanillin in EtOH containing 2% H₂SO₄) and heating at 105°C. The result was depicted (Figure I and Table IV).

Antioxidant compounds may function as free radical scavengers, initiator of the complexes of pro-oxidant metals, reducing agents and quenchers of singlet oxygen formation. Phenolic compounds and flavonoids are major constituents of most of the plants reported possessing antioxidant and free radical scavenging activity (Satheesh et al., 2010).

Polyphenols are the major plant compounds with a high level of antioxidant activity. This activity could be due to their ability to adsorb, neutralize and to quench free radicals. Their ability as free radical scavenger could also be attributed to their redox properties, presence of conjugated ring structures and carboxylic group which have been reported to inhibit lipid peroxidation (Oyedemi et al., 2010). In this present study, phytochemical test of EE MR showed that presence of phenolic compounds and flavonoid and are responsible for antioxidant activity.

DPPH is widely used to evaluate the free radical scavenging effect of natural antioxidant. DPPH is a stable free radical at room temperature (Satheesh et al., 2010). As the electron became paired in the presence of

Figure I. HPTLC chromatogram of EEMR showing different peaks of phytoconstituents

Table IV. HPTLC profile of EEMR

<table>
<thead>
<tr>
<th>Peak</th>
<th>Start Position</th>
<th>Start Height</th>
<th>Max Position</th>
<th>Max Height</th>
<th>Max %</th>
<th>End Position</th>
<th>End Height</th>
<th>Area</th>
<th>Area %</th>
<th>Assigned Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06 Rf</td>
<td>0.1 AU</td>
<td>0.08 Rf</td>
<td>18.2 AU</td>
<td>5.33%</td>
<td>0.11 Rf</td>
<td>0.2 AU</td>
<td>240.0 AU</td>
<td>1.95%</td>
<td>Unknown*</td>
</tr>
<tr>
<td>2</td>
<td>0.12 Rf</td>
<td>0.3 AU</td>
<td>0.15 Rf</td>
<td>29.7 AU</td>
<td>8.69%</td>
<td>0.18 Rf</td>
<td>0.3 AU</td>
<td>524.7 AU</td>
<td>4.27%</td>
<td>Unknown*</td>
</tr>
<tr>
<td>3</td>
<td>0.22 Rf</td>
<td>2.0 AU</td>
<td>0.26 Rf</td>
<td>48.0 AU</td>
<td>14.03%</td>
<td>0.30 Rf</td>
<td>0.6 AU</td>
<td>908.6 AU</td>
<td>7.39%</td>
<td>Unknown*</td>
</tr>
<tr>
<td>4</td>
<td>0.44 Rf</td>
<td>3.9 AU</td>
<td>0.51 Rf</td>
<td>36.6 AU</td>
<td>10.69%</td>
<td>0.57 Rf</td>
<td>8.5 AU</td>
<td>1224.0 AU</td>
<td>9.95%</td>
<td>AutoGenerated1</td>
</tr>
<tr>
<td>5</td>
<td>0.60 Rf</td>
<td>11.2 AU</td>
<td>0.74 Rf</td>
<td>55.7 AU</td>
<td>16.28%</td>
<td>0.77 Rf</td>
<td>43.4 AU</td>
<td>3174.9 AU</td>
<td>25.81%</td>
<td>Unknown*</td>
</tr>
<tr>
<td>6</td>
<td>0.79 Rf</td>
<td>56.5 AU</td>
<td>0.87 Rf</td>
<td>153.8 AU</td>
<td>44.98%</td>
<td>0.93 Rf</td>
<td>0.2 AU</td>
<td>6227.4 AU</td>
<td>50.63%</td>
<td>Unknown*</td>
</tr>
</tbody>
</table>
free radical scavenging the absorption vanishes and the resulting discoloration stoichiometrically coincides with the number of electrons taken up. The bleaching of DPPH absorption is representative of the capacity of the test drugs to scavenge free radicals independently. The bleaching of DPPH molecules can be correlated with the number of available hydroxyl groups. We can infer that, the activity of the extract may be probably due to the presence of a substance with an available hydroxyl group. The extracts are able to reduce the stable radical DPPH to the yellow coloured diphenylpicrylhydrazine (Kumaravel et al., 2013).

Super oxides are produced from molecular oxygen due to oxidative enzymes of the body as well as by nonoxidative reactions by autocatecholamines (Bhaskar et al., 2006). Overproduction of super oxide anion radical contributes to redox imbalance and associated with harmful physiological consequences. Super oxide anion are generated in PMS-NADH system by the oxidation of NADH and assayed by the reduction of NBT resulting in the formation of blue formazan (Rajesh et al., 2011). In cellular oxidation reactions, superoxide radicals have their initial effects magnified because they produce other kinds of cell-damaging free cells and oxidizing agents (Jayasri et al., 2011).

Hydroxyl radical scavenging activity is measured as the percentage of inhibition of hydroxyl radical generated in the Fenton’s reaction mixture (Bhaskar et al., 2006). Among the oxygen radicals, hydroxyl radical is the most reactive and induces severe damage to adjacent biomolecules such as protein, DNA and lipids; cause’s lipids peroxidation [19]. The Fenton reaction generates hydroxyl radicals (OH) which degrade DNA deoxyribose, using Fe2+ salts as an important catalytic component. Oxygen radicals may attack DNA either at the sugar or the base, giving rise to a large number of the product (Kumaravel et al., 2013).

In the reducing power assay, the more antioxidant compounds convert the oxidation form of iron (Fe3+) in ferric chloride to ferrous (Fe2+) (Mahmood Reza et al., 2008). Compounds with reducing power indicate that they are electron donors and can reduce the oxidized intermediates of lipid peroxidation processes, so that they can act as primary and secondary antioxidants (Jayanthi et al., 2014). In this assay, the yellow colour of the test solution changes to various shades of green and blue depending on the reducing power of each compound.

Direct reaction of a substance is not the only mechanism by which the antioxidants may display their activity. Secondary, preventive, or type 2, antioxidants act through numerous possible mechanisms. These antioxidants do not convert free radicals to more stable products but slow the rate of oxidation by several different mechanisms. One of the most important mechanisms of action of secondary antioxidants is chelation of pro-oxidant metals. Iron and other transition metals (copper, chromium, cobalt, vanadium, cadmium, arsenic, nickel) promote oxidation by acting as catalysts for free radical reactions. These redox-active transition metals transfer single electrons during changes in oxidation states. Chelation of metals by certain compounds decreases their prooxidant effect by reducing their redox potentials and stabilizing the oxidized form of the metal. Chelating compounds may also sterically hinder the formation of the metal hydroperoxidecomplex (Marijana et al., 2011).

The total protein level reduced in CCl4 and paracetamol induced oxidation stress in rats and was due to the stabilization of endoplasmic reticulum leading to protein synthesis. The antioxidant effects exhibited by EEMR 200mg/kg and 400mg/kg were statistically similar to that observed with standard Silymarin at 25mg/kg dose level. Because of the partially reduced forms of oxygen, during oxidation in a living system, are cytotoxic, protective antioxidant enzymes (including superoxide dismutase (SODs), catalase, and glutathione peroxidases) usually exist to convert these reduced forms of oxygen to water. Superoxide dismutase is an enzyme which has an overall effect to lower the steady-state concentration of superoxide in the liver cells.

Lipid peroxidation (LPO) is a major consequence in CCl4 and paracetamol hepatotoxicity. The TBA reactive substance test showed an incidence of lipid peroxidation by
carbon tetrachloride treatment. Lipids undergo peroxidation in the presence of reactive oxygen species, which interfere with the structural appearance of these lipids and make them deleterious in the process. To regulate lipid peroxidation, there is a defense system involving antioxidant enzymes that play an imperative role in scavenging reactive oxygen species. The susceptibility of an organism to free radical stress and peroxidative damage is related to the balance between the free radical burden and the adequacy of antioxidant defenses. Treatment with the extract however decreased the extent of lipid peroxidation caused by CCl₄ as well as paracetamol and restored the antioxidant protection of the living cell. Lipid soluble antioxidants may therefore play a role in reducing lipid peroxidation.

Pre-treatment with MR could ameliorate the oxidative stress as demonstrated by the increase in SOD activity in the MR treated group similar to the normal group. SOD catalyses the reaction:

\[\text{O}_2 + \text{O}_2 + 2\text{H} \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \]

Using reduced glutathione as the reducing agent, glutathione peroxidases also convert hydrogen peroxide (H₂O₂) to water. Consequently, the oxidative stress is either reduced or eliminated. Hence, GSH constitutes the first direct line of defense against free radical activity in the cells and is a critical determinant of tissue susceptibility to oxidative damage.

The extract may therefore have precursors to or constitute some lipid soluble antioxidants as well as have significant regenerative or de novo synthesis effect on glutathione peroxidase (GPx) and reduced glutathione (GSH).

A potential of the antioxidant property underlying MR may be attributed to the antioxidative constituents (Donatus et al., 1990).

HPTLC analyses were performed to identify chromatographic markers and to compare the chromatographic fingerprints of MR with authentic materials (Olivier et al., 2007). HPTLC study confirmed that ethanol extracts M. reticulate possess six phytochemical constituents which were shown fingerprints with respective Rf values from 0.08 to 0.87. To justify the antioxidant potency report, there is a need for isolation and identification of each constituent, is essential which confirm the respective pharmacological activity.

CONCLUSION

The present study revealed antioxidant property may be due to the phytoconstituents such as a flavonoid and phenolic compound in MR. Ethanol extract was found more potent in vitro and in vivo antioxidant scavenging. So ethanol extract of MR may be used as natural antioxidant and can be used for curing various ailments caused by free radicals. It is recommended that phytoconstituents present in MR can be identified individually and its more activities can be revealed in future studies.

REFERENCE

